Robot Mapping

Extended Kalman Filter

Gian Diego Tipaldi, Luciano Spinello,
Wolfram Burgard

SLAM is a State Estimation
Problem

= Estimate the map and robot’s pose

= Bayes filter is one tool for state
estimation

= Prediction

bel(xy) = /p(:):t | ug, 1) bel(xi_1) dre_q

= Correction

bel(xs) =1 p(z | z¢) bel(wy)

Kalman Filter

= [t is a Bayes filter
» Estimator for the linear Gaussian case

= Optimal solution for linear models and
Gaussian distributions

Kalman Filter Distribution

= Everything is Gaussian

p(z) = det(2r%)~F exp (— 5(z —)75 (= —)

34.1% 34.1%

00 01 02 03 04

—-30 —-20 —-1lo M lo 20 30

Courtesy: K. Arras 4

Properties: Marginalization and
Conditioning

= Given (Z,
T =

Lb

) p(z) =N
= The marginals are Gaussians

p(xa,) =N p(mb) =N

= as well as the conditionals
p(alxp) =N plEp | za) =N

Marginalization
« Given p(z) = p(zq, 7) = N (1, L)

- _ [Ha o 2iaa 2ab
with #= (iy) > = (S)
= The marginal distribution is

pla) = / p(a,23) dy = N1, S)

with U= g Z:Zaa

Conditioning
« Given p(z) = p(a,) = N(u, T)

- _ [Ha o 2iaa 2ab
with #= (iy) > = (S)
= The conditional distribution is

o p(xaaafb) L
p(an | xb) o p(xb) o N(:uv E)

with U= Mg + Zabzb_bl(b — lub)
Y = aa — ZasXhy Sta

Linear Model

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

vy = Arxi_1 + Brus + €

Lt — C’ta:t -+ 575

Components of a Kalman Filter

A Matrix (n x n) that describes how the state
t evolves from t — 1 to ¢ without controls or
noise.

Bt Matrix (n x () that describes how the control
u+ changes the state fromt —1 toz¢t.

(', Matrix (k x n) that describes how to map the
state x; to an observation z;.

€+ Random variables representing the process
and measurement noise that are assumed to

515 be independent and normally distributed
with covariance R, and (); respectively.

Linear Motion Model

= Motion under Gaussian noise leads to

p(y | ug, wp—1) =7

10

Linear Motion Model

= Motion under Gaussian noise leads to

] I

plxs | ug, xe_q) = det(2nRy) ™

1 _
exXp <—§(ﬂi‘t — Ay — Btut)TRt 1(9675 — Ay — Btut)

= RR; describes the noise of the motion

)

11

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(Zt | $t) =7

12

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z: |) = det(27Qy) 2

exp (—%(Zt — Cyx)" Qy (2 — Ctivt))

» (); describes the measurement noise

13

Everything stays Gaussian

= Given an initial Gaussian belief, the
belief is always Gaussian

w(xt) — /p(xt | ug, xpq) bel(xi_1) dry_q

bel(xs) =1 p(z | z¢) bel(wy)

= Proof is non-trivial
(see Probabilistic Robotics, Sec. 3.2.4)

14

Kalman Filter Algorithm

Kalman_filter (u; 1,1, us, 2¢):

fe = A¢ -1 + Bt uy
Zt — At Zt—l A? —|— Rt

K; =% CH(Cy 2 CF + Q)
pe = e + Ke(ze — Cy jir)

Zt — (I— Kt Ct) Zt

return fig, 2

15

1D Kalman Filter Example (1)

| prediction | measurement

correction

It's a weighted mean!

> = 16

1D Kalman Filter Example (2)

prediction

measurement

correction

Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = Ayxi—1 + Byuy + €
<t = CtCEt —+ 5,5

What if this is not the case?

18

Non-linear Dynamic Systems

= Most realistic problems (in robotics)

involve nonlinear functions

1;t/

|

\

It = Q(Utaﬂft—l) + € 2t = h(CCt) + 5t

19

Linearity Assumption Revisited

6| 6
piyi= My, ap+hb,a%e m— - 3K+ h
X Mean of piy) = Mean p
)
4
3
Y
1 - 1 +
0 05 1 1.5 0 0.5 1
6| l
P = NE% p, o7
d= hean of pix)
2 |
0

€6urtesy: Thrln, Burgard, Fox »q

Non-Linear Function

Py
— Gaussian of py)

X Mean of piy)

-2

Non- GaussmnI

U 0.2 0.4 0.6 UB

Y=g

— Function gi=)
= hean p

O o

0.5 1

Pl
g hdean p

+

€6urtesy: Thrln, Burgard, Fox 21

Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

22

Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!

23

EKF Linearization: First Order
Taylor Expansion

= Prediction:
99 (s, 11
g(utzxt—l) %g(ut’u,t_l) + g(at Mt 1)
o 9Tt-1
_.q,
= Correction: \

h(ze) =~ h(fe) +

24

Reminder: Jacobian Matrix

= Jtis a non-square matrix m x n in general

= GGiven a vector-valued function

/ gi(x) \
g(x) _ 92?@
N\)
= The Jacobian matrix is defined as
/ 991 9g1 991 \
8%1 8332 e 8a:n
992 Og2 Og2

(;x _ 3%1 8?2 T 8?%

8g'rn agm agm /
ox1 Oxo T oxn,

25

Reminder: Jacobian Matrix

= Jt is the orientation of the tangent plane to
the vector-valued function at a given point

Courtesy: K. Arras

= Generalizes the gradient of a scalar valued
function

26

EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(us, thi—
g(ug, xe—1) ~ g(ug, pe—1) + g(at 1) (xe—1 — pe—1)
_.q,
= Correction: \

— 1 . I
h(zy) ~ h(jiy) + Linear functions!

27

Linearity Assumption Revisited

6| 6
piyi= My, ap+hb,a%e m— - 3K+ h
X Mean of piy) = Mean p
)
4
3
Y
1 - 1 +
0 05 1 1.5 0 0.5 1
6| l
P = NE% p, o7
d= hean of pix)
2 |
0

€6urtesy: Thrln, Burgard, Fox »g

Non-Linear Function

6 6
Ry — Function gi=)
— Gaussian of piy) = hean p
41 ® Mean of p(y) 4 O o
-
0 T 0f
-2 -2
4 4 + -
0 0204 06 0.8 0 0.5 1
8 ()
g hdean p
-4
2|
0 =

€6urtesy: Thrln, Burgard, Fox »g

EKF Linearization (1)

6 6
P ‘ = Function g
— Gaussian of py) — Taylor approx.
4 || — EFE Gaussian 4qr g hean p
O sl

2 -

0 T o0t

_2 _2.

-4 e -4 + -

0 0.2 04 06 0.8 0 0.5 1
61 p()
= Mean p

2-
0 £ S

CGurtesy: Thrlin, Burgard, Fox 3q

EKF Linearization (2)

61y 6
Py — Function gix)
= aussian of piy = Taylor approx.
4 q — EFK Gaussian 4 = Meanp
QO oW
2| ‘; 2
i 5
0 T 0
-2 -2
-4 ' - 4 + '
0 0.5 1 0 0.5 1
4 L o ﬂﬁjan e
= Vi /\
0 L]

]

CSurtesy: Thrin, Burgard, Fox 31

EKF Linearization (3)

Py
= Gaussian of py)

— EFK Gaussian

¥=0i=)

= Function g
= Taylor approx.
= Mean

0 o

e
0 0.5
pi)
= tdean p
e

&6urtesy: Thrun, Burgard, Fox 32

Linearized Motion Model

= The linearized model leads to

1
2

p(ZCt ‘ Ut,ZCt_l) ~ det (2’7TR75)

1
exp (— 5 (l‘t — g(ut,ut_1) — Gy ($t—1 — Mt—l))T

B (w1 = glus, 1) = Go (w1 — 1))

\ -

linearized model

= R; describes the noise of the motion

33

Linearized Observation Model
= The linearized model leads to

p(z | 7)) = det (27Q;) ™2

1

exp (-3 (2t — h(fie) — He (e — 1))"

Q7 (2 (Mt) Hy (x4 — ﬂtl))

linearized model

= J: describes the measurement noise

34

Extended Kalman Filter

Algorithm
1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):
2: e = g, fi—1
3: Zt — Gt Zt—l G%F -+ Rt
4. K,=%, HI (H, X H' + Q)" ' |Gt < Hy
3} pe = fir + K (2 —ﬁﬁét))

0: Zt — (I — Kt Ht) Zt
7 return pis, 2

KF vs. EKF

35

Extended Kalman Filter
Summary

= Extension of the Kalman filter
= One way to handle the non-linearities
» Performs local linearizations

= Works well in practice for moderate
non-linearities

= L arge uncertainty leads to increased
approximation error error

36

Literature

Kalman Filter and EKF

= Thrun et al.: "Probabilistic Robotics”,
Chapter 3

= Schon and Lindsten: “"Manipulating the
Multivariate Gaussian Density”

= Welch and Bishop: "Kalman Filter
Tutorial”

37

Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
from courses of Wolfram Burgard, Dieter Fox, and myself.

=] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
bonn.des8

