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KF, EKF and UKF

= Kalman filter requires linear models
= EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

¥

Unscented Kalman Filter (UKF)



Taylor Approximation (EKF)

/) —

Linearization of the non-linear
function through Taylor expansion



Unscented Transform

Compute a set of (so-called)
sigma points



Unscented Transform

Transform each sigma point
through the non-linear function



Unscented Transform

Compute Gaussian from the
transformed and weighted
sigma points



Unscented Transform Overview

= Compute a set of sigma points
= Each sigma points has a weight

= Transform the point through the non-
linear function

= Compute a Gaussian from weighted
points

= Avoids to linearize around the mean
as Taylor expansion (and EKF) does



Sigma Points

= How to choose the sigma points?
= How to set the weights?



Sigma Points Properties

= How to choose the sigma points?
= How to set the weights?
= Select xl ! so that:

3wl
o= Zw[i]g([]
Y = Zw Iyt — )T

» There is no unlque solution for X!, wll
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Sigma Points
= Choosing the sigma points

xl0l [

First sigma point is the mean
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Sigma Points

= Choosing the sigma points

xo= 4
xlil = ,u—l—(\/(n—l—/\)Z) fori=1,...,n
il —

,u—}\/(n—l—)\) Z)i_n fori=n+1,...,2n

\

matrix square column vector

root

dimensionality scaling parameter
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Matrix Square Root

= Defined as S with > = SS
= Computed via diagonalization

> = VDv!
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Matrix Square Root
= Thus, we can define

\/dll 0
S =V 0 0 V1

0 dn,

A\ J/

D1l/2

= 5O that
SS = (VDY2v—\YWVDY2v—YH =vDVl=%
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Cholesky Matrix Square Root

= Alternative definition of the matrix
square root

L with ¥ = LL!

= Result of the Cholesky decomposition
= Numerically stable solution

= Often used in UKF implementations

= [,and ). have the same Eigenvectors
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Sigma Points and Eigenvectors

= Sigma point can but do not have to
lie on the main axes of >

xll = u+(\/(n—|—)\)§]) fori=1,..., n

1

il = ,u—<\/(n+)\)§]). fori=n+1,...,2n

7
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Sigma Points Example
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Sigma Point Weights
= Weight sigma points

for computing

the mean parameters
A
0] _

m n -+ \

wLO]«‘ = w4+ (1-a%+p)
wil = i\ = ! fore=1,...,2n

m 1(‘3 2(n + A) T
\

for computing the covariance
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Recover the Gaussian

= Compute Gaussian from weighted and
transformed points

2n
p' > will g(xth
1=0

2= D el (g(X) = p)(g(xt) = )"
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Example

p(y) — Function g(x)
—— Gaussian of p(y) i x  Sigma-points
—— Mean of p(y) O g(sigma points)
- - - UKF Gaussian [
- - - Mean of UKF

9%

y:

L4
Ly

p(x)
x Meanp

P(x)

¥

Courtesy: Thrun, Burgard, Fox 1g




Examples

: T
o((z.)T) = ( 142+ Zl:l_(gg)y—l— cos(y) )
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Unscented Transform Summary

= Sigma points

xloh =
xlil = u+(\/(n—|—)\)§])_ fori=1,...,n
xll = u—(\/(n—l—)\)Z)_ fore=n+1,...,2n
= Weights
A
(0] p—
W n+ A
we = wy +(1-a®+ )
1
wi =l = fori=1,...,2n
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UT Parameters

= Free parameters as there is no unique
solution

= Scaled Unscented Transform suggests

Kk > 0 Influence how far the
sigma points are

a € (0,1] away from the mean

A = o*(n+k)—n

5 — 9 Optimal choice for

Gaussians
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Examples
k=3,a=0.01
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Examples
k=3,aa=0.295

=10, a = 0.25
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EKF Algorithm

Extended_Kalman_filter(u; 1, %1, us, 2¢):

e = g(ug, pe—1)
Zt — Gt Zt—l G? —|— Rt

Ky =% H (Hy Xy H' + Q)™
pe = e + Kie(ze — h(fw))

Zt — (I— Kt Ht) Et
return iy, 23+
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EKF to UKF - Prediction

Unscented
Extended Kalman _filter(u; 1, %1, us, 2¢):

ft =  replace this by sigma point
Yy =  propagation of the motion

return iy, 23+
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UKF Algorithm - Prediction

1:

Unscented_Kalman_filter(u: 1, >¢—1, U, 2¢):

Xio1 = (-1 1+ /(M + N1 e — V/(m+ N2 )

Xt* — Q(Uta Xt—l)
2n
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EKF to UKF - Correction

N

&0

=k

Unscented

Ex-t-eﬁd-ed'_Kalman_ﬁlter(ut_l, Zt—]_? Uy, Zt):

ft =  replace this by sigma point
>+ =  propagation of the motion

use sigma point propagation for the
expected observation and Kalman gain

return iy, 2+
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UKF Algorithm - Correction (1)

10:

11:

Xy =

(B e+ + NS i —/(n+ N)Ey)

Zi_lka

2,5 — Z wk} _t[l]

Ky =

}:w (2" =227 = 2)T + @
z—O

sz](X — fit)( ]—Zt)T

EwZS_
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UKF Algorithm - Correction (1)

10:

11:

Xy = (fig
Z, = h(&,)

1=0
2n
57 =3l
1=0
K, =397 ;71

A+ (N2 i —

V(n+ )2

=3 HT(Ht My HT =+ Qt)

(from EKF)
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UKF Algorithm - Correction (2)

6: Xe= (i f+/(n+N) fir—/(n+ A)2y)
7 Z = h(Xt>

10: X797 = Z wl (X — )2 - 20T

11: K, =%7*s§;1

12: pe = fig + K (20 — 2¢)
13: Y =% —K,; S; K
14 return i, 24




UKF Algorithm - Correction (2)

10:

11:
12:
13:
14

X = (e i+ (n+ )%
Zy = h(X)

2n
Zt = qu[g _t[l]

o B
se=> wllE! 2@ - 27
- N 2n o i
57 = S ull(E (- 2

return fig, 2

it —

2y

V(n+ )2

o
5y

¢
5 —
5 —

(see next slide)

(-
— KiHy>

— K (Ex’Z>T
Ky (57757 8) T
— Ky (K:S)"

i —

Kth)it

K:SI'KT
KS; K}
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From EKF to UKF - Computing
the Covariance
Zt — (I — Kth)it
— it — Kthit
_ LN
= X — K (2%%)
— it — Kt (z_]a:,zst—lst)T
= y T
= 2 — Ky (KtSt)
= ¥, - K.SI'K!
— St — KtStKér
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UKF vs. EKF

ply)
— Gaussian of ply)

—— Mean of p(y)
- - - EKF Gaussian
- - - Mean of EKF

p(y)
— @Gaussian of ply)

—— Mean of p(y)
- - - UKF Gaussian
- - - Mean of UKF

oly)

— Function g(x)
x Sigma-points
O g(sigma points)

o =,

| y=9(x)

.

x » x
X
p(x)
x Meanp
2|
X1
x

Courtesy: Thrun, Burgard, Fox
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UKF vs. EKF (Small Covariance)

p(y)
—— Gaussian of p(y)

— Mean of ply)
- - - EKF Gaussian
- - - Mean of EKF

p(y)
—— Gaussian of p(y)

— Mean of ply)
- - - UKF Gaussian
- - - Mean of UKF

o)

o)

—— Function g(x)
x Sigma-points
O g(sigma points)

y=9(x)

4

» X

p(x)
x Meanpu

o

Courtesy: Thrun, Burgard, Fox
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UKF vs. EKF — Banana Shape

EKF approximation

= —=<

UKF approximation

e
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UKF vs. EKF

Actual (sampling) Linearized (EKF) uT
: #\ - | sigma pmnts

‘ y :: f(X)

weighted sample mean
and covariance

v

transfarmed
mgma points

LT mean

LT Gwananue

Courtesy: E.A. Wan and R. van der Merwe



UT/UKF Summary

= Unscented transforms as an
alternative to linearization

= UT is a better approximation than
Taylor expansion

= UT uses sigma point propagation
* Free parameters in UT

= UKF uses the UT in the prediction and
correction step
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UKF vs. EKF

= Same results as EKF for linear models

= Better approximation than EKF for
non-linear models

= Differences often “somewhat smal
= No Jacobians needed for the UKF
= Same complexity class

= Slightly slower than the EKF

» Still restricted to Gaussian
distributions

III
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Literature

Unscented Transform and UKF
= Thrun et al.: "Probabilistic Robotics”,
Chapter 3.4

= “A New Extension of the Kalman Filter
to Nonlinear Systems” by Julier and
Uhlmann, 1995

= "Dynamische Zustandsschatzung” by
Franken, 2006, pages 31-34
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—41
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