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Gaussians

= Gaussian described by moments u, X

p(z) = det(2r%)~F exp (— 5(z — )75 (= — )
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Canonical Parameterization

= Alternative representation for
Gaussians

= Described by information matrix ()
and information vector ¢
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Gaussians

= Described by information matrix ()
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Complete Parameterizations
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Towards the Information Form
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Towards the Information Form
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Towards the Information Form

p(x)
—  det(27%) "% exp ( _ %(x )Ty — u))
= det(QWE)_% exp ( — %a:TZ_la: + iyt — %,uTE_l,u)
= det(27%) 77 exp ( %,LLTZ_l,u)

1
exp ( — §xTZ_1a: + mTZ_l,u>

1
= nexp(—ixTZ Ly + 21y~ ,u)



Towards the Information Form
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Dual Representation

exp(—gp' ¢

1
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canonical parameterization

1

p(z) = det(2n%)F exp ( — 2 (x— )" Sz — p))

moments parameterization
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Marginalization and Conditioning
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From the Kalman Filter to the
Information Filter

= Two parameterization for Gaussian
= Same expressiveness

= Marginalization and conditioning have
different complexities

= We learned about Gaussian filtering
with the Kalman filter in Chapter 4

= Kalman filtering in information from is
called information filtering
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Kalman Filter Algorithm

Kalman_filter (u; 1,1, us, 2¢):

K; =% CH(Cy 2 CF + Q)
pe = e + Ke(ze — Cy jir)

Zt — (I— Kt Ct) Zt

return fig, 2
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Prediction Step (1)

* Transform X, = A; ;1 Al + R,
= Using %, ; =0,
= Leads to

Q, = (A, QY AT + R)™!
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Prediction Step (2)

= Transform [ = A pui—1 + Bt uy

= Using  fir—1 = Q&1
= Leads to

& = (A pe—1 + B uy)
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Information Filter Algorithm

1: Information_filter(&; 1,1, us, 2¢):

2: Q; = (A, Q1 AT + Ry) ™!
& = Qt(At (2 11 Et—1 + Bt uy)

&0

@)
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xt) =1 p(2e | 21) bel(ay)

, 1 _ 1 _ _ _
= 1 exp (—5 (2t = Coare)" Q" (20 — Ctﬂit)) exp (—5 (@ — )" Tyt (4 — Mt))
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xi) =1 p(2t | 1) bel(wy)
= 7 exp (—% (2t — Coa)" Q7" (20 — Ctilft)) exp (—5 (we — )" Sp " (24 — Mt))
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xi) =1 p(2t | 1) bel(wy)
= 77/ exp (—% (Zt - Ctxt)T Qt—l (Zt — Ctxt)) exp (—% (ﬂft — ﬂt)T it_l (xt - Mt))

1 _ 1 _ = _
— o e (g (o= Coa)” @ (e — ) = 5 (o= ) 57 (o= )
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Correction Step

= Use the Bayes filter measurement

update and replace the components

bel(xt) =1 p(2e | 21) bel(ay)

, 1 _ 1 - _ .
n €xp (—5 (2t — Ctxt)T Q; ! (2t — Ctilft)) exp (—5 (s — Mt)T 2 ! (¢ — Mt))

1 _ 1 B — _
n' exp <—§ (2t — Crae)" Q" (22 — Crry) — 3 (ze — )" S0 (2 — Mt))

1 _ _ 1 ~ -
n" exp (—5 el Cr Q7 Croy+al CF QY 2 — 3 zl Qg + :UtTft>
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o &
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Correction Step

= This results in a simple update rule

N\ 7 \ . 7

Ve N

Qy £t

k

O, = Cl o7t Cy+
& CtT Qt_l Zt—l—gt

1 _ _
bel(xy) = m exp (2 :E;;F [C;‘F Qt_l Cy + Q] x4 +£13tT [C;‘F Qt_l 2t ‘l‘ft])
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Information Filter Algorithm

1: Information_filter(&; 1,1, us, 2¢):

2: Q; = (A, Q1 AT + Ry) ™!
3: ft Qt(At Qt 11 ft 1 T+ Bt ’U,t)

4: Q; =CF Q' Cy+
3 &=CF Qe+ &
0: return &, ()




Prediction and Correction

* Prediction
Q, = (A, Q1 A+ R)?
& = Qt(At Qt__ll Ei—1 + By uy)

= Correction
Q. = Cl Q7 Cy+Q,
¢ = Cf Qt_l 2 + &

Discuss differences to the KF!
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Complexity

= Kalman filter

= Efficient prediction step: O(n?)*

» Costly correction step:  O(n? + k%)
= Information filter

= Costly prediction step:  O(n??)

= Efficient correction step: O(n?)*

= Transformation between both
parameterizations is costly: O(n2%)

*Potentially faster, especially for SLAM; depending on type of
controls and observations
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Extended Information Filter

= As the Kalman filter, the information
filter suffers from the linear models

= The extended information filter (EIF)
uses a similar trick as the EKF

= | inearization of the motion and
observation function
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Linearization of the EIF

= Taylor approximation analog to the
EKF (see Chapter 4)

glug, xe—1) =~ glug, pe—1) + Gt (xe—1 — fe—1)
h(xy) h(ie) + Hy (¢ — fig)

¢

= with the Jacobians G, and H,
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Prediction: From EKF of EIF

= Substitution of the moments brings us
from the EKF

¥y = G X q G;r + Ry
ae = g(us, fhe—1)
= to the EIF
Q, = (G GH+R)™

Qt g(uta Qt__ll ft—l)
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Prediction: From EKF of EIF

1: Extended_Kalman_filter(u; 1,>: 1, us, 2¢):
20 e = g(ut, fle—1)

3: Zt — Gt Zt—l G? -+ Rt

1: Extended_information_filter(&; 1,2 1, us, 2¢):

i1 = Q1 &y

Q, = (G L GT 4+ R) ™!
e = g(ue, pe—1)

Et = )y [
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Correction Step of the EIF

= As from the KF to IF transition, use
substitute the moments in the

measurement update

1

bel(xy) = n exp (—5 (2t — h(ite) — Hy (24 — ,L_Lt))T Qt_l

(2t — h(ie) — Hy (0 — it)) — %(ﬂft — fig)" By (e — ﬂt))

= This leads to
Qt — Qt —|— Hg Qt_l Ht
& = G+ H Q' (2 — () + Hy fit)
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Extended Information Filter

1:

Extended_information_filter(&; 1, Q¢ 1, us, 2¢):

Ht—1 = Qt 11 ft 1

Q; = (G Y GT + Ry) ™!

pt = Q(Ut fht—1)

Et = 0y [y

€y :_Qt +HE Q7!

& =&+ HE Q' (2 — h(jig)+Hy fiy)
return &;, ()
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EIF vs. EKF

= The EIF is the EKF in information form

= Complexities of the prediction and
correction steps can differ

= Same expressiveness than the EKF
» Unscented transform can also be used

= Reported to be numerically more
stable than the EKF

= In practice, the EKF is more popular
than the EIF
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Summary

= Gaussians can also be represented
using the canonical parameterization

= Allow for filtering in information form

= Information filter vs. Kalman filter

= KF: efficient prediction, slow correction
= [F: slow prediction, efficient correction

= The application determines which filter
is the better choice!
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Literature

Extended Information Filter

= Thrun et al.: “"Probabilistic Robotics”,
Chapter 3.5
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list
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