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Robot Mapping  

Summary on the Kalman Filter & 
Friends: KF, EKF, UKF, EIF, SEIF 

Gian Diego Tipaldi, Luciano Spinello, 
Wolfram Burgard 
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Three Main SLAM Paradigms 
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Graph-
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Kalman Filter & Its Friends 
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Kalman Filter Algorithm 

prediction 

correction 



5 

Non-linear Dynamic Systems 

 Most realistic problems in robotics 
involve nonlinear functions 

requires linearization 

EKF 
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KF vs. EKF 

 EKF is an extension of the KF 

 Approach to handle the non-linearities 

 Performs local linearizations  

 Works well in practice for moderate 
non-linearities and uncertainty  
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EKF for SLAM 
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EKF SLAM 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF SLAM 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF SLAM 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF-SLAM Properties  

 In the limit, the landmark estimates 
become fully correlated 

Courtesy: Dissanayake 
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EKF-SLAM Complexity 

 Cubic complexity only on the 
measurement dimensionality  

 Cost per step: dominated by the 
number of landmarks: 

 Memory consumption:  

 The EKF becomes computationally 
intractable for large maps! 
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Unscented Kalman Filter (UKF) 

UKF Motivation 

 Kalman filter requires linear models  

 EKF linearizes via Taylor expansion 

 

 Is there a better way to linearize? 

 Unscented Transform 

Unscented Kalman Filter (UKF) 
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Taylor Approximation (EKF) 

Linearization of the non-linear 
function through Taylor expansion 
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Unscented Transform 

Compute a set of (so-called) 
sigma points 
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Unscented Transform 

Transform each sigma point  
through the non-linear motion 
and measurement functions 
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Unscented Transform 

Reconstruct a Gaussian from the 
transformed and weighted points 
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UKF vs. EKF 

 Same results as EKF for linear models  

 Better approximation than EKF for 
non-linear models 

 Differences often “somewhat small” 

 No Jacobians needed for the UKF 

 Same complexity class  

 Slightly slower than the EKF 
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EIF: Two Parameterizations for 
a Gaussian Distribution 
  

 moments  canonical 

covariance matrix 
mean vector 

information matrix 
information vector 
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Extended Information Filter 

 The EIF is the EKF in information form 

 Instead of the moments        the 
canonical form is maintained using 

 Conversion between information for 
and canonical form is expensive 

 EIF has the same expressiveness than 
the EKF 
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EIF vs. EKF 

 Complexity of the prediction and 
corrections steps differs 

 KF: efficient prediction, slow correction 

 IF: slow prediction, efficient correction 

 “The application determines the filter” 

 In practice, the EKF is more popular 
than the EIF 
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Motivation for SEIF SLAM 

Gaussian  
estimate 

(map & pose) 

normalized 
covariance 

matrix 

normalized 
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matrix 

Courtesy: Thrun, Burgard, Fox 
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Keep the Links Between in the 
Information Matrix Bounded 

Courtesy: Thrun, Burgard, Fox 
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Four Steps of SEIF SLAM 

1. Motion update 

2. Measurement update 

3. Update of the state estimate 

4. Sparsification 
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Efficiency of SEIF SLAM 

 Maintains the robot-landmark links 
only for a small set of landmarks at a 
time 

 Removes robot-landmark links by 
sparsification (equal to assuming 
conditional independence)  

 This also bounds the number of 
landmark-landmark links 

 Exploits the sparsity of the information 
matrix in all computations 
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SEIF SLAM vs. EKF SLAM 

 SEIFs are an efficient approximation 
of the EIF for the SLAM problem 

 Neglects links by sparsification 

 Constant time updates of the filter  
(for known correspondences) 

 Linear memory complexity 

 Inferior quality compared to EKF 
SLAM  
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Summary 

 KFs deal differently with non-linear 
motion and measurement functions 

 KF, EKF, UKF, EIF suffer from 
complexity issues for large maps  

 SEIF approximations lead to sub-
quadratic memory and runtime 
complexity 

 All filters presented so far,  
require Gaussian distributions 



28 

Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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