Robot Mapping

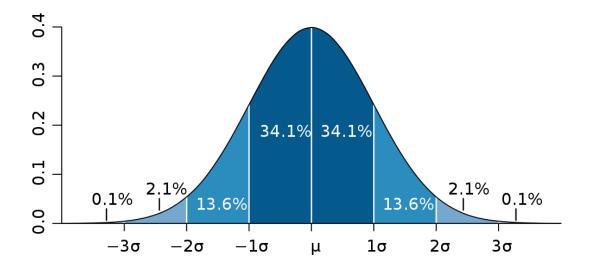
Short Introduction to Particle Filters and Monte Carlo Localization

Gian Diego Tipaldi, Luciano Spinello, Wolfram Burgard

Gaussian Filters

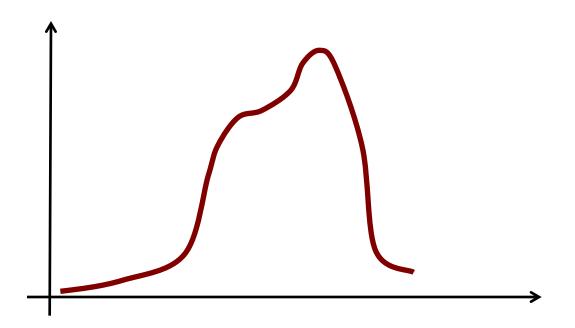
 The Kalman filter and its variants can only model Gaussian distributions

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right)$$



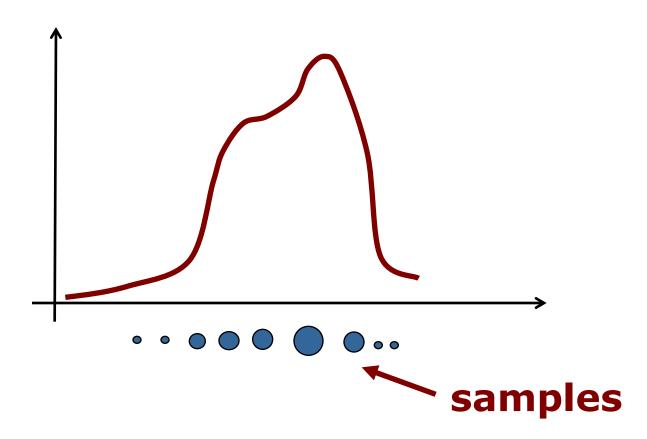
Motivation

Goal: approach for dealing with arbitrary distributions



Key Idea: Samples

 Use multiple samples to represent arbitrary distributions



Particle Set

Set of weighted samples

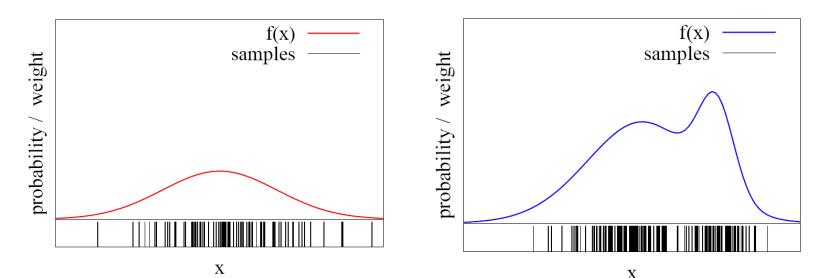
$$\begin{aligned} \mathcal{X} &= \left\{ \left\langle x^{[j]}, w^{[j]} \right\rangle \right\}_{j=1,\dots,J} \\ \text{state} \\ \text{hypothesis} & \text{importance} \\ \text{weight} \end{aligned}$$

The samples represent the posterior

$$p(x) = \sum_{j=1}^{J} w^{[j]} \delta_{x^{[j]}}(x)$$

Particles for Approximation

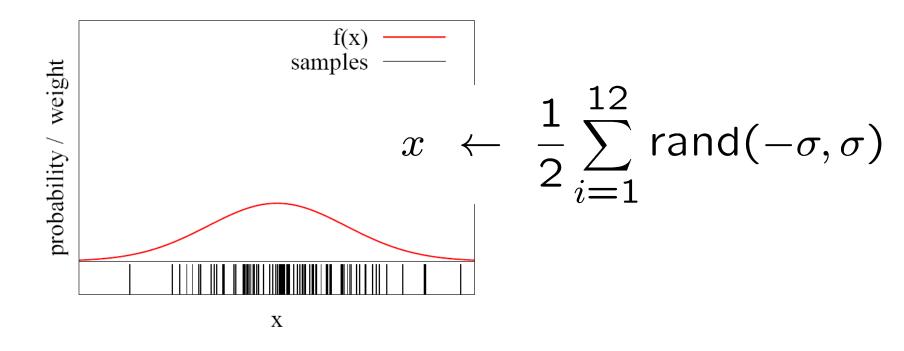
Particles for function approximation



 The more particles fall into a region, the higher the probability of the region
How to obtain such samples?

Closed Form Sampling is Only Possible for a Few Distributions

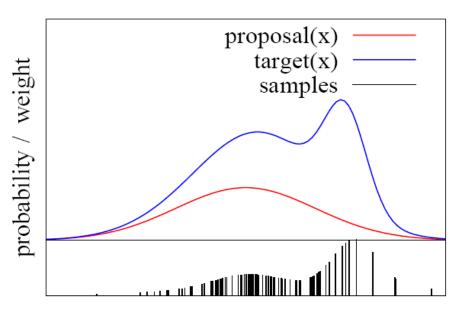
Example: Gaussian



How to sample from **other** distributions?

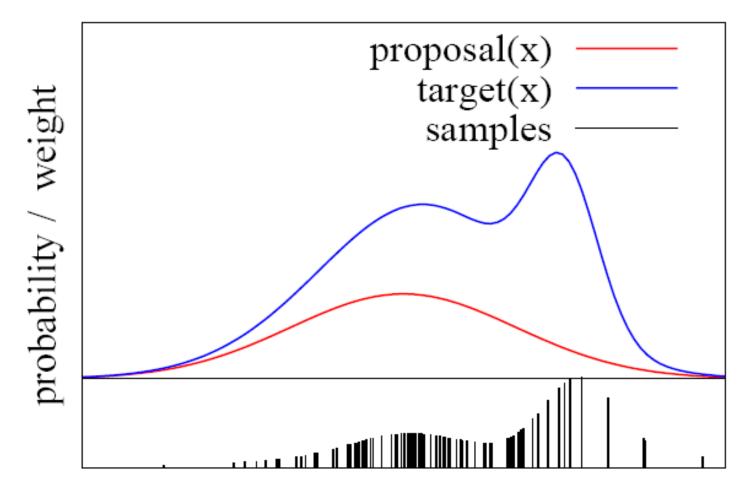
Importance Sampling Principle

- We can use a different distribution g to generate samples from f
- Account for the "differences between g and f" using a weight w = f/g
- target f
- proposal g
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$



Х

Importance Sampling Principle



Particle Filter

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by samples
- Prediction: draw from the proposal
- Correction: weighting by the ratio of target and proposal

The more samples we use, the better is the estimate!

Particle Filter Algorithm

 Sample the particles using the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

- Resampling: Draw sample i with probability $w_t^{\left[i\right]}$ and repeat J times

Particle Filter Algorithm

$$\begin{aligned} & \text{Particle_filter}(\mathcal{X}_{t-1}, u_t, z_t): \\ & 1: \quad \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset \\ & 2: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 3: \quad \text{sample } x_t^{[j]} \sim \pi(x_t) \\ & 4: \quad w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})} \\ & 5: \quad \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle \\ & 6: \quad \text{endfor} \\ & 7: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 8: \quad draw \ i \in 1, \dots, J \text{ with probability} \propto w_t^{[i]} \\ & 9: \quad \text{add } x_t^{[i]} \text{ to } \mathcal{X}_t \\ & 10: \quad \text{endfor} \\ & 11: \quad \text{return } \mathcal{X}_t \end{aligned}$$

Monte Carlo Localization

- Each particle is a pose hypothesis
- Proposal is the motion model

F . 7

$$x_t^{[j]} \sim p(x_t \mid x_{t-1}, u_t)$$

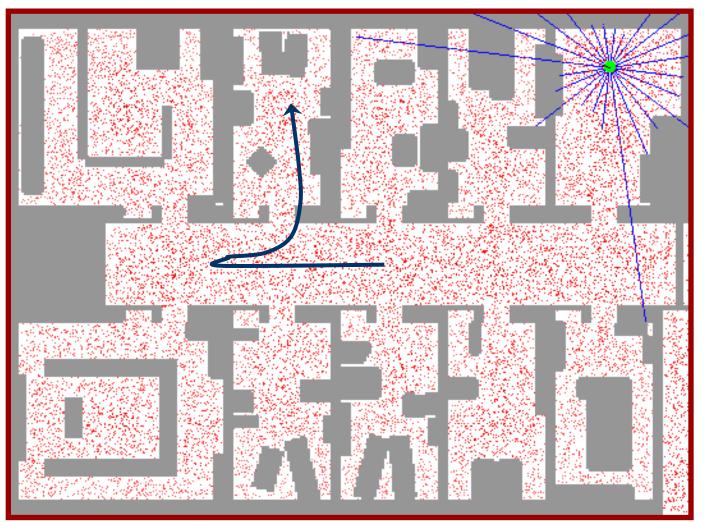
Correction via the observation model

$$w_t^{[j]} = \frac{target}{proposal} \propto p(z_t \mid x_t, m)$$

Particle Filter for Localization

$$\begin{aligned} & \text{Particle_filter}(\mathcal{X}_{t-1}, u_t, z_t): \\ & 1: \quad \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset \\ & 2: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 3: \quad \text{sample } x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]}) \\ & 4: \quad w_t^{[j]} = p(z_t \mid x_t^{[j]}) \\ & 5: \quad \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle \\ & 6: \quad \text{endfor} \\ & 7: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 8: \quad draw \ i \in 1, \dots, J \text{ with probability} \propto w_t^{[i]} \\ & 9: \quad add \ x_t^{[i]} \text{ to } \mathcal{X}_t \\ & 10: \quad \text{endfor} \\ & 11: \quad \text{return } \mathcal{X}_t \end{aligned}$$

Application: Particle Filter for Localization (Known Map)

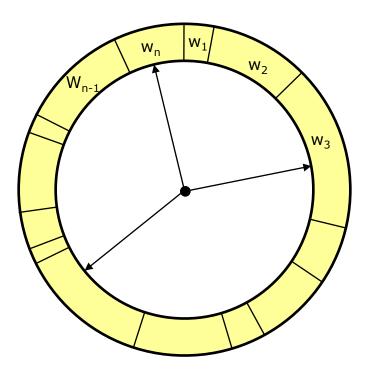


Courtesy: D. Fox 15

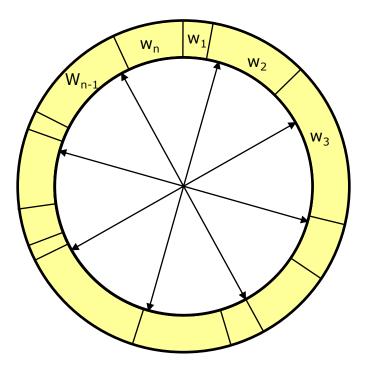
Resampling

- Draw sample i with probability $w_t^{[i]}$. Repeat J times.
- Informally: "Replace unlikely samples by more likely ones"
- Survival of the fittest
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number of samples

Resampling



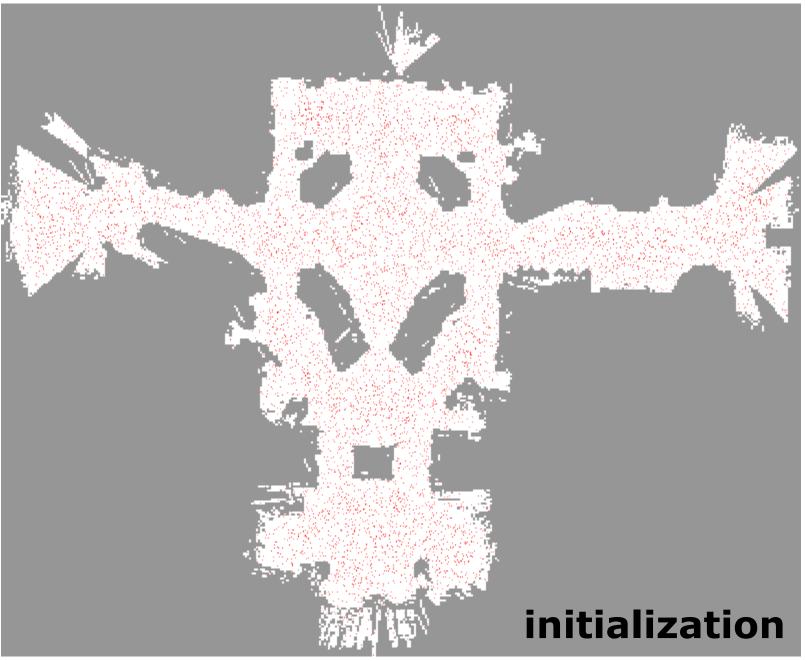
- Roulette wheel
- Binary search
- O(J log J)

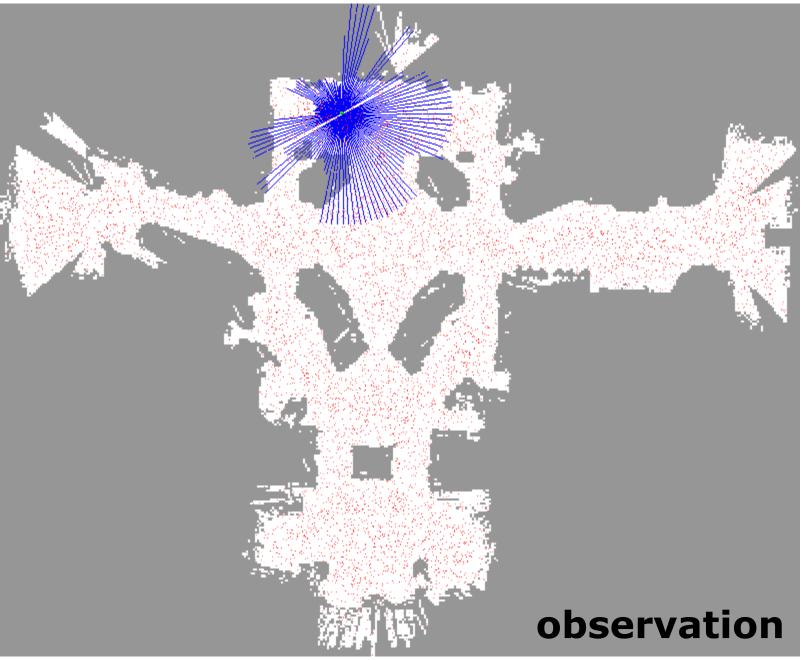


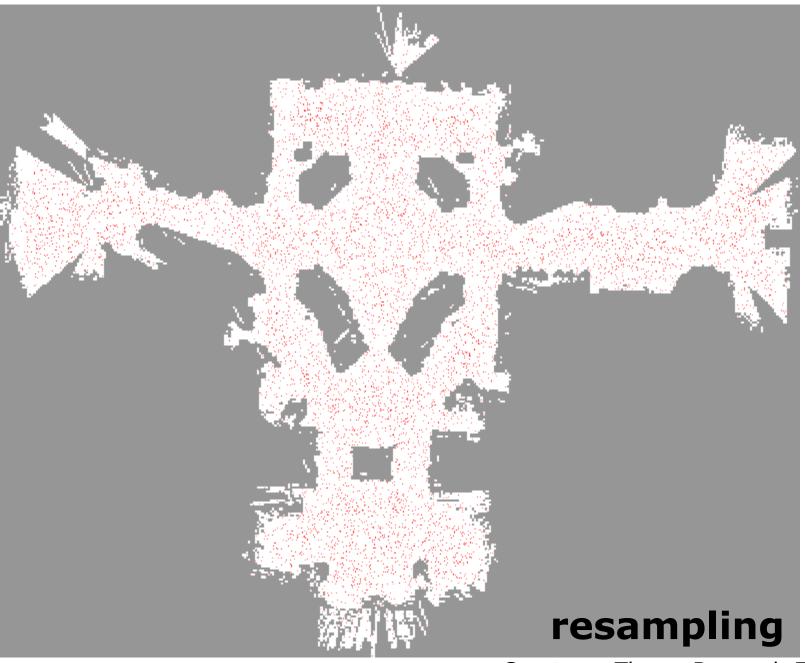
- Stochastic universal sampling
- Low variance
- O(J)

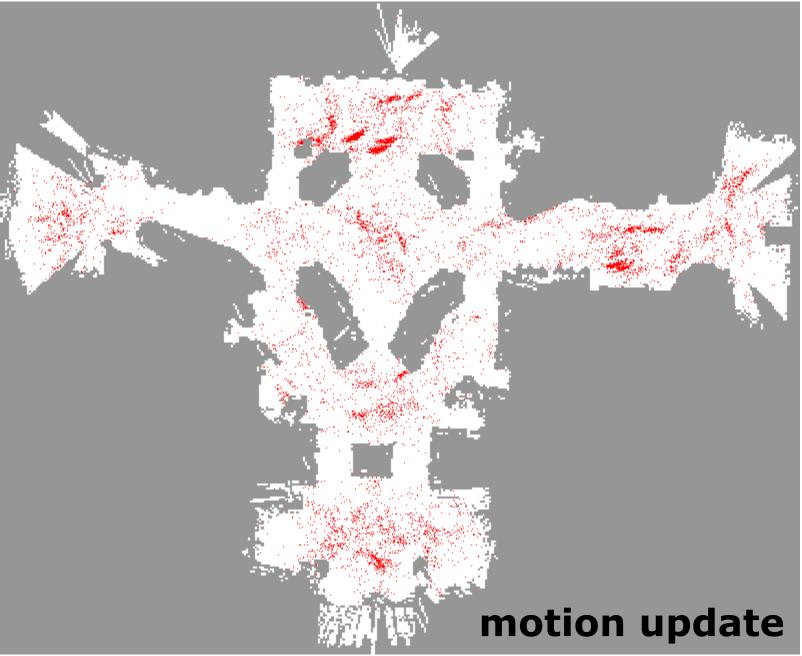
Low Variance Resampling

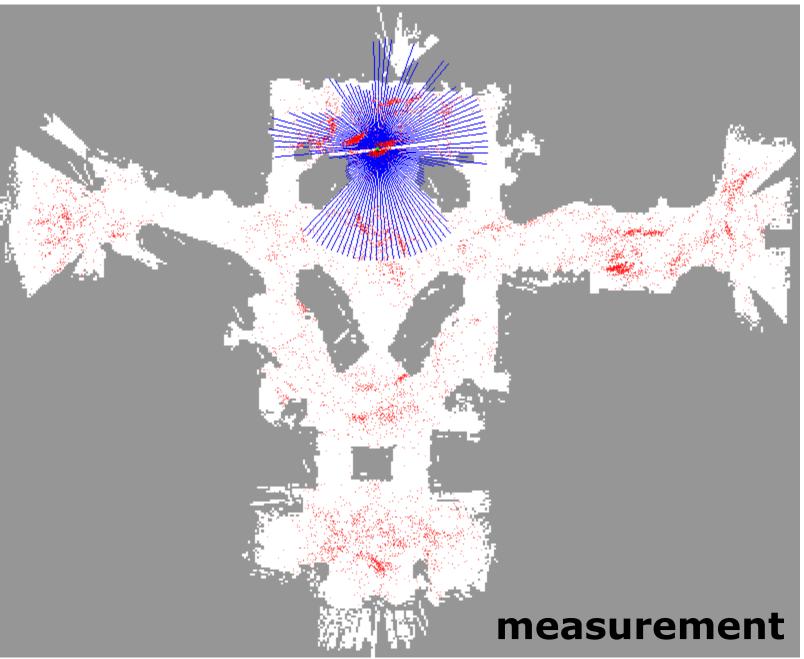
Low_variance_resampling($\mathcal{X}_t, \mathcal{W}_t$): $\mathcal{X}_t = \emptyset$ 1: 2: $r = rand(0; J^{-1})$ 3: $c = w_t^{[1]}$ 4: i = 15: for j = 1 to J do $U = r + (j - 1)J^{-1}$ 6: 7: while U > c8: i = i + 1 $c = c + w_t^{[i]}$ 9: 10: endwhile add $x_t^{[i]}$ to $\bar{\mathcal{X}}_t$ 11: 12: endfor 13: return $\bar{\mathcal{X}}_t$

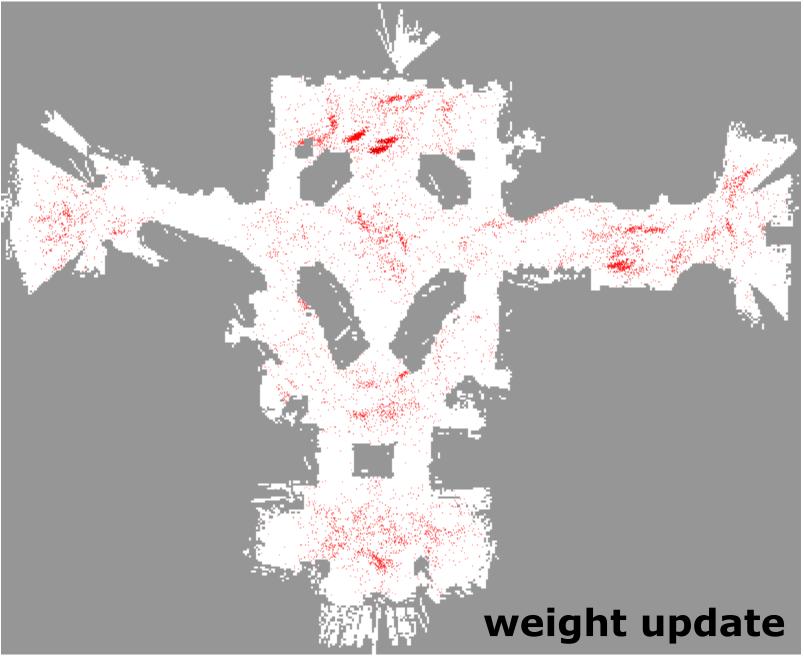


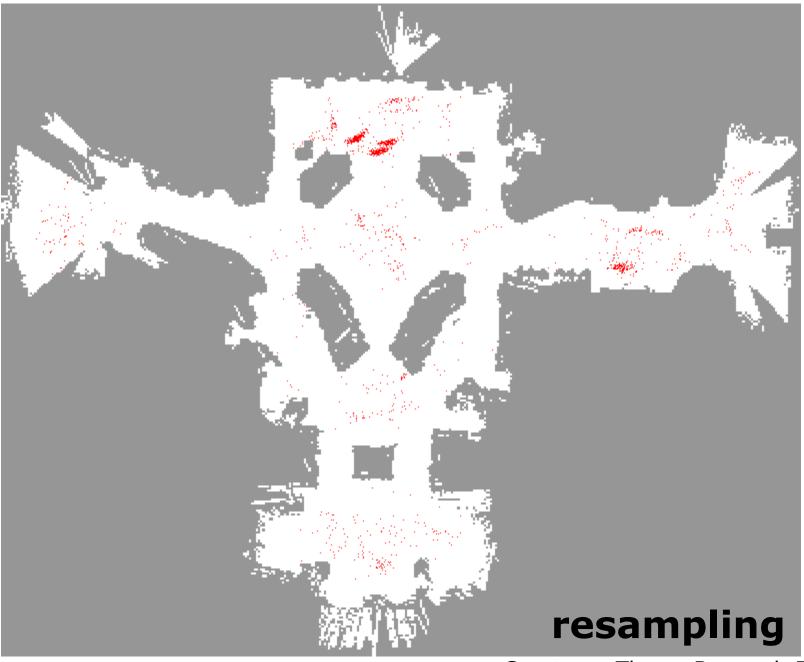


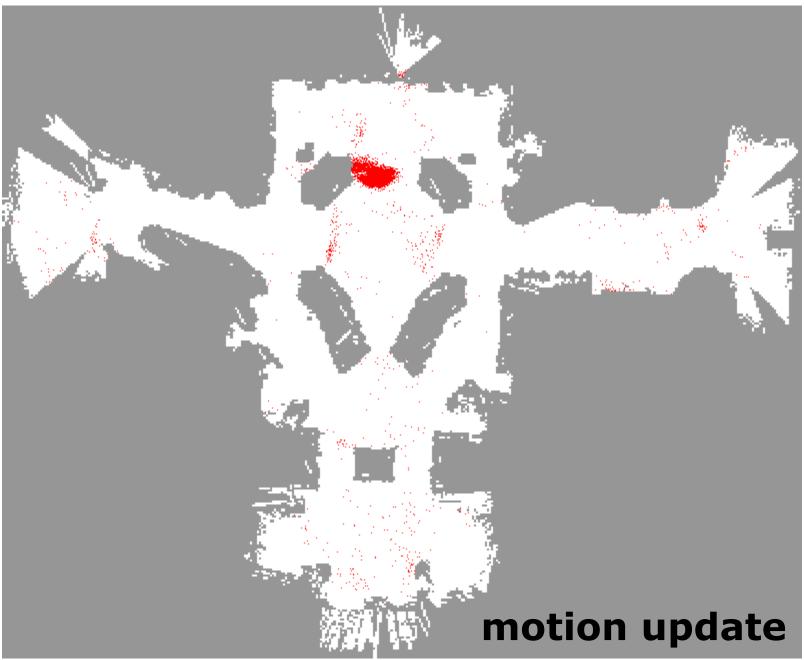


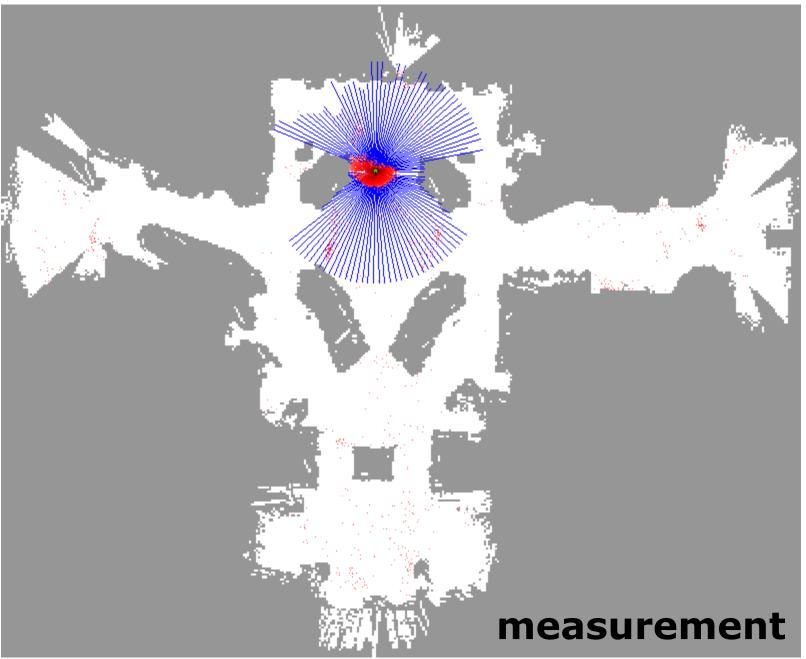


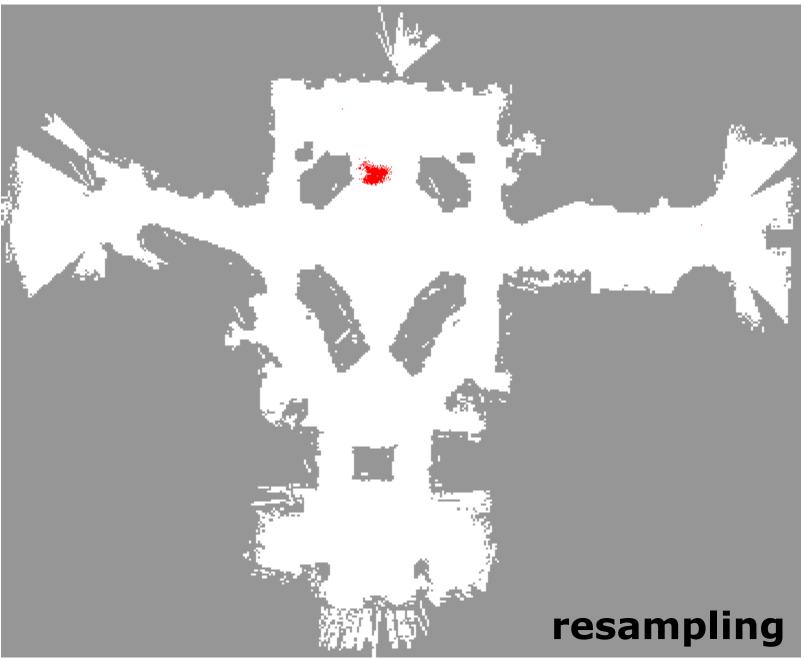


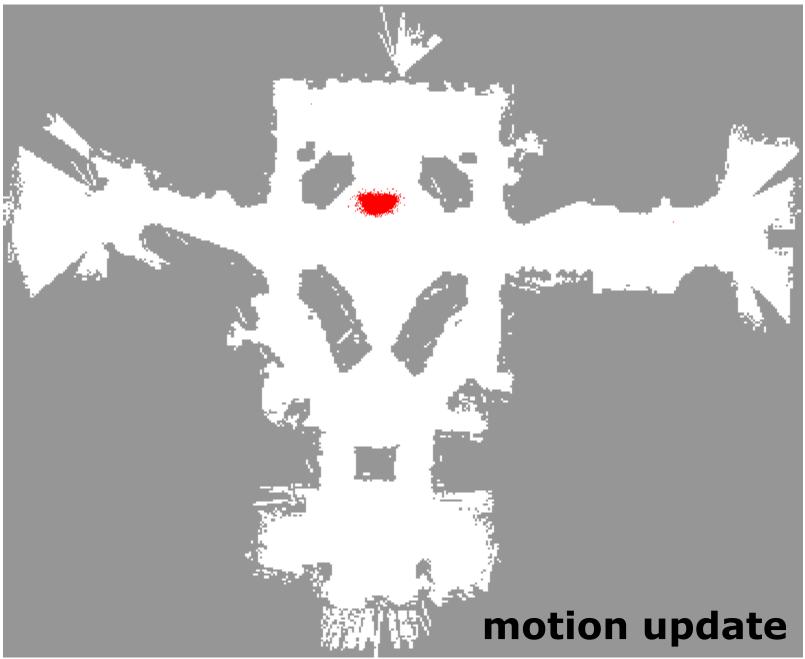


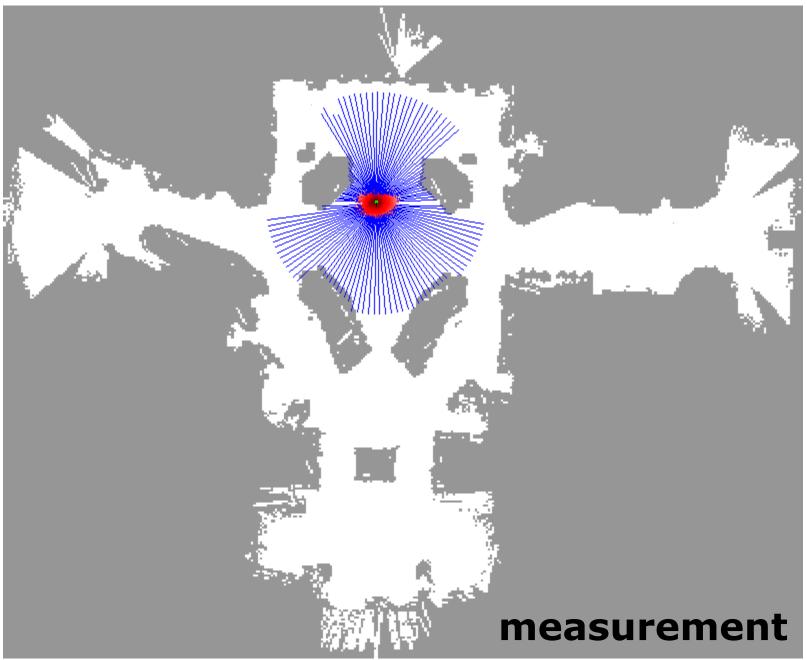


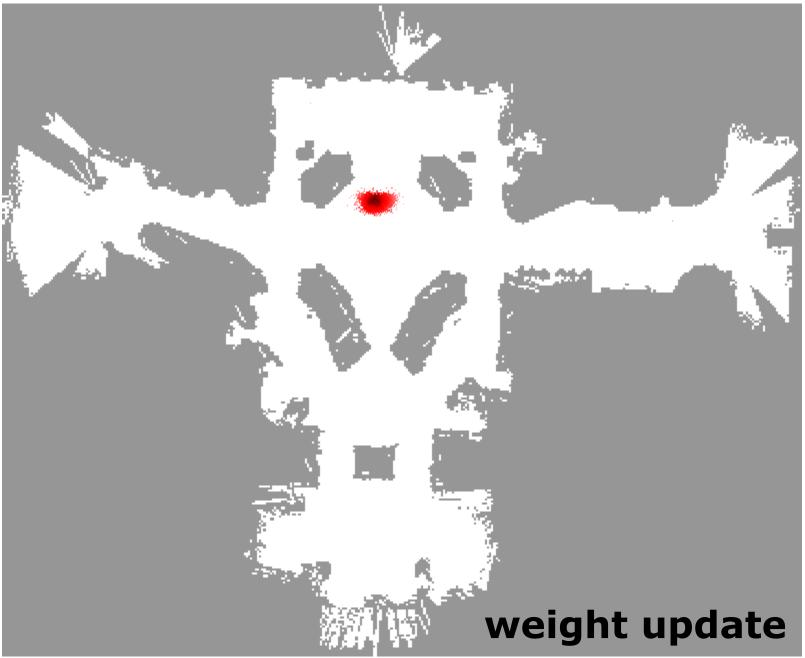


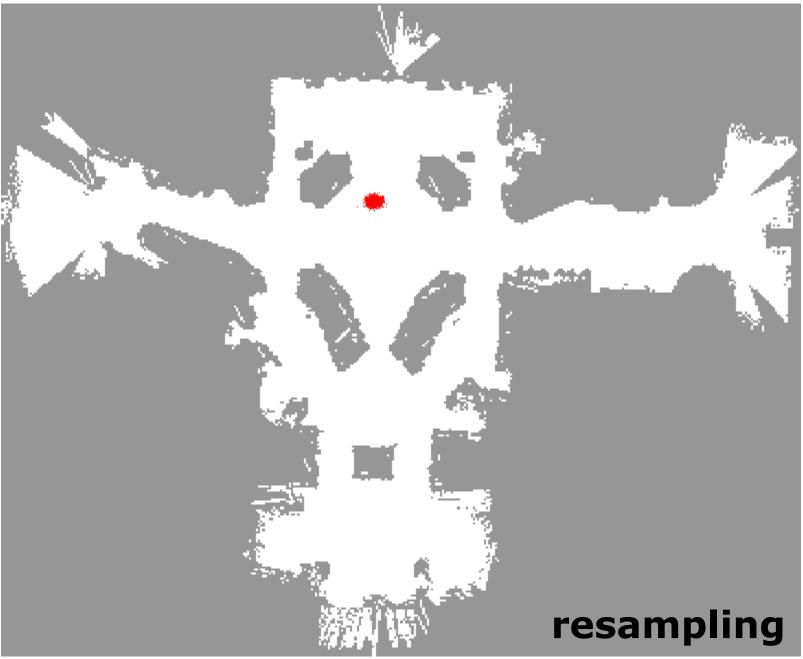


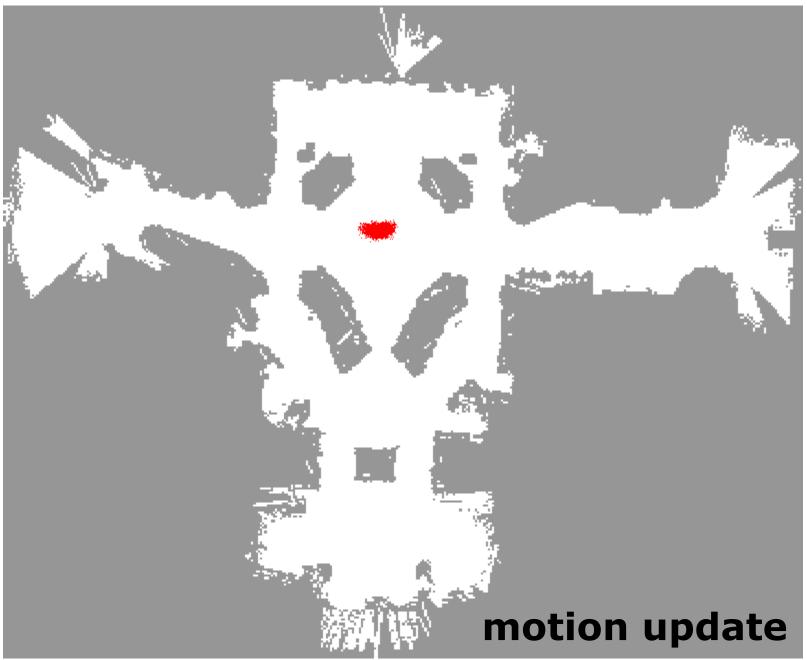


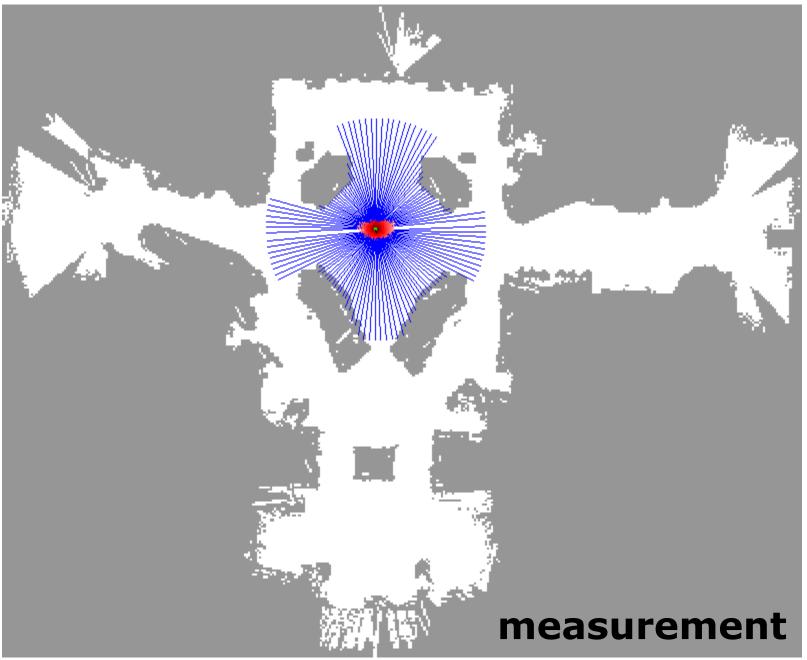












Summary – Particle Filters

- Particle filters are non-parametric, recursive Bayes filters
- Posterior is represented by a set of weighted samples
- Proposal to draw the samples for t+1
- Weight to account for the differences between the proposal and the target
- Work well in low-dimensional spaces

Summary – PF Localization

- Particles are propagated according to the motion model
- They are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- MCL is the gold standard for mobile robot localization today

Literature

On Monte Carlo Localization

 Thrun et al. "Probabilistic Robotics", Chapter 8.3

On the particle filter

 Thrun et al. "Probabilistic Robotics", Chapter 3

On motion and observation models

 Thrun et al. "Probabilistic Robotics", Chapters 5 & 6

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Edwin Olson, Pratik Agarwal, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de