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Robot Mapping  

Least Squares Approach 
to SLAM  

Gian Diego Tipaldi, Luciano Spinello, 
Wolfram Burgard 
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Three Main SLAM Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 

least squares  
approach to SLAM 



3 

Least Squares in General 

 Approach for computing a solution for 
an overdetermined system 

 “More equations than unknowns” 

 Minimizes the sum of the squared 
errors in the equations 

 Standard approach to a large set of 
problems 

 

Today: Application to SLAM 
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Robot pose Constraint  

Graph-Based SLAM 

 Constraints connect the poses of the 
robot while it is moving 

 Constraints are inherently uncertain 
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Graph-Based SLAM 

 Observing previously seen areas 
generates constraints between non-
successive poses 

 

 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

 Use a graph to represent the problem 

 Every node in the graph corresponds 
to a pose of the robot during mapping 

 Every edge between two nodes 
corresponds to a spatial constraint  
between them 

 Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-Based SLAM in a Nutshell 

 Every node in the 
graph corresponds 
to a robot position 
and a laser 
measurement 

 An edge between 
two nodes 
represents a spatial 
constraint between 
the nodes 

KUKA Halle 22, courtesy of P. Pfaff 
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graph, we determine 
the most likely map 
by correcting the 
nodes 
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Graph-Based SLAM in a Nutshell 

 Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 

 Then, we can render a 
map based on the 
known poses 
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The Overall SLAM System 

 Interplay of front-end and back-end 

 Map helps to determine constraints by 
reducing the search space 

 Topic today: optimization 

Graph 
Construction 

(Front-End) 

Graph 
Optimization 

(Back-End) 

raw 
data 

graph  
(nodes & edges) 

node positions 

today 
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The Graph 

 It consists of n nodes   

 Each     is a 2D or 3D transformation 
(the pose of the robot at time ti) 

 A constraint/edge exists between the 
nodes     and     if… 
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Create an Edge If… (1) 

 …the robot moves from     to 

 Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

 Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

 Transformations can be expressed 
using homogenous coordinates 

 Odometry-Based edge 
 

 

 Observation-Based edge 

How node i sees node j 
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Homogenous Coordinates 

 H.C. are a system of coordinates used 
in projective geometry 

 Projective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

 Formulas involving H.C. are often 
simpler than in the Cartesian world 

 A single matrix can represent affine 
transformations and projective 
transformations 
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Homogenous Coordinates 

 H.C. are a system of coordinates used 
in projective geometry 

 Projective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

 Formulas involving H.C. are often 
simpler than in the Cartesian world 

 A single matrix can represent 
affine transformations and 
projective transformations 
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Homogenous Coordinates 

 N-dim space expressed in N+1 dim 

 4 dim. for modeling the 3D space 

 To HC:  

 Backwards: 

 Vector in HC: 

 Translation: 

 

 Rotation: 
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The Edge Information Matrices 

 Observations are affected by noise 

 Information matrix      for each edge 
to encode its uncertainty 

 The “bigger”     , the more the edge 
“matters” in the optimization  

 

Questions 

 What do the information matrices look like 
in case of scan-matching vs. odometry? 

 What should these matrices look like when 
moving in a long, featureless corridor? 
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Pose Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph 

 Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 

 

 

Question: 

 What is the state vector? 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 

 

 

Question: 

 What is the state vector? 
 

 

 Specify the error function! 

One block for each  

node of the graph 
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The Error Function 

 Error function for a single constraint  

 

 
 

 

 Error as a function of the whole state vector 

 

 

 Error takes a value of zero if 

 

xj referenced w.r.t. xi measurement 
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Gauss-Newton: The Overall 
Error Minimization Procedure  

 Define the error function 

 Linearize the error function  

 Compute its derivative  

 Set the derivative to zero 

 Solve the linear system 

 Iterate this procedure until 
convergence 
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Linearizing the Error Function 

 We can approximate the error 
functions around an initial guess    
via Taylor expansion 

 

 

 

with 
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Derivative of the Error Function 

 Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

 Does one error term           depend on 
all state variables? 

       No, only on     and   
 Is there any consequence on the 

structure of the Jacobian? 

 Yes, it will be non-zero only in the   
 rows corresponding to     and 
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Jacobians and Sparsity 

 Error           depends only on the two 
parameter blocks     and 

 
 

 The Jacobian will be zero everywhere 
except in the columns of     and  
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Consequences of the Sparsity 

 We need to compute the coefficient 
vector    and matrix    : 

 

 

 
 The sparse structure of      will result 

in a sparse structure of   

 This structure reflects the adjacency 
matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Consequences of the Sparsity 

 An edge contributes to the linear 
system via      and   

 The coefficient vector is: 

 

 

 

 

 It is non-zero only at the indices 
corresponding to     and  
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Consequences of the Sparsity  

 The coefficient matrix of an edge is: 

 

 

 

 

 

 

 

 Non-zero only in the blocks relating i,j  
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Sparsity Summary 

 An edge ij contributes only to the  

 ith and the jth block of   

 to the blocks ii, jj, ij and ji of   

 Resulting system is sparse 

 System can be computed by summing 
up the contribution of each edge 

 Efficient solvers can be used 

 Sparse Cholesky decomposition  

 Conjugate gradients 

 … many others 
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The Linear System 

 Vector of the states increments: 

 

 Coefficient vector: 

 

 System matrix: 
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Building the Linear System 

For each constraint: 

 Compute error 

 Compute the blocks of the Jacobian: 

 
 Update the coefficient vector: 

 

 Update the system matrix: 
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Algorithm 
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Example on the Blackboard 
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Trivial 1D Example 

 Two nodes and one observation 

BUT                    ??? 
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What Went Wrong? 

 The constraint specifies a relative 
constraint between both nodes 

 Any poses for the nodes would be fine  
as long a their relative coordinates fit 

 One node needs to be “fixed” 

constraint 
that sets  
dx1=0 
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Role of the Prior 

 We saw that the matrix     has not full 
rank (after adding the constraints) 

 The global frame had not been fixed  

 Fixing the global reference frame is 
strongly related to the prior 

 A Gaussian estimate about      results 
in an additional constraint 

 E.g., first pose in the origin:  
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Real World Examples 
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Fixing a Subset of Variables 

 Assume that the value of certain variables 
during the optimization is known a priori 

 We may want to optimize all others and 
keep these fixed 

 How? 
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Fixing a Subset of Variables 

 Assume that the value of certain variables 
during the optimization is known a priori 

 We may want to optimize all others and 
keep these fixed 

 How? 

 If a variable is not optimized, it should 
“disappears” from the linear system 
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Fixing a Subset of Variables 

 Assume that the value of certain variables 
during the optimization is known a priori 

 We may want to optimize all others and 
keep these fixed 

 How? 

 If a variable is not optimized, it should 
“disappears” from the linear system 

 Construct the full system 

 Suppress the rows and the columns 
corresponding to the variables to fix 
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Why Can We Simply Suppress 
the Rows and Columns of the 
Corresponding Variables? 

Courtesy: R. Eustice 
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Uncertainty 

     represents the information matrix 
given the linearization point 

 Inverting     gives the (dense) 
covariance matrix 

 The diagonal blocks of the covariance 
matrix represent the (absolute) 
uncertainties of the corresponding 
variables 
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Relative Uncertainty 

To determine the relative uncertainty 
between     and    : 

 Construct the full matrix  

 Suppress the rows and the columns of   
    (= do not optimize/fix this variable) 

 Compute the block j,j of the inverse 

 This block will contain the covariance 
matrix of     w.r.t.    , which has been 
fixed 
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Example 

robot 
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Conclusions 

 The back-end part of the SLAM 
problem can be effectively solved  
with Gauss-Newton  

 The     matrix is typically sparse 

 This sparsity allows for efficiently 
solving the linear system 

 One of the state-of-the-art solutions  
for computing maps  
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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