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Robot Mapping  

Max-Mixture and Robust 
Least Squares for SLAM  

Gian Diego Tipaldi, Luciano Spinello, 
Wolfram Burgard 

Courtesy for most images: Pratik Agarwal 
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Least Squares in General 

 Minimizes the sum of the squared 
errors  

 ML estimation in the Gaussian case 

 

Problems:  

 Sensitive to outliers 

 Only Gaussians (single modes)  
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Data Association Is Ambiguous 
And Not Always Perfect 

 Places that look identical 

 Similar rooms in the same building 

 Cluttered scenes 

 GPS multi pass (signal reflections) 

 … 
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Example 

3D world belief about the 
robot’s pose 

Courtesy: E. Olson 
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Such Situations Occur In Reality 

Courtesy: E. Olson, P. Agarwal 
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Committing To The Wrong Mode 
Can Lead to Mapping Failures  

Courtesy: E. Olson, P. Agarwal 



7 

Data Association Is Ambiguous 
And Not Always Perfect 

 Places that look identical 

 Similar rooms in the same building 

 Cluttered scenes 

 GPS multi pass (signal reflections) 

 … 
 

How to incorporate that  
into graph-based SLAM? 
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Mathematical Model 

 We can express a multi-modal belief 
by a sum of Gaussians 

Sum of Gaussians with k modes 
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Problem 

 During error minimization, we consider 
the negative log likelihood 

The log cannot be moved inside the sum! 
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Max-Mixture Approximation 

 Instead of computing the sum of 
Gaussians at   , compute the 
maximum of the Gaussians 
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Max-Mixture Approximation 

approximation error 
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Log Likelihood Of The Max-
Mixture Formulation 

 The log can be moved inside the max 
operator 

or: 
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Integration 

 With the max-mixture formulation, the 
log likelihood again results in local 
quadratic forms 

 Easy to integrate in the optimizer: 

1. Evaluate all k components  

2. Select the component with the 
maximum log likelihood 

3. Perform the optimization as before 
using only the max components  
(as a single Gaussian) 
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Performance (Gauss vs. MM) 

Courtesy: E. Olson, P. Agarwal 



16 

Runtime 

Courtesy: E. Olson, P. Agarwal 
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MM For Outlier Rejection 

Courtesy: E. Olson, P. Agarwal 



18 

Max-Mixture and Outliers 

 MM formulation is useful for multi-
model constraints (D.A. ambiguities) 

 MM is also a handy tool outliers  
(D.A. failures) 

 Here, one mode represents the edge 
and a second model uses a  flat 
Gaussian for the outlier hypothesis 
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Performance (1 outlier) 

Gauss-Newton MM Gauss-Newton 
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Performance (10 outliers) 

Gauss-Newton MM Gauss-Newton 
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Performance (100 outliers) 

Gauss-Newton MM Gauss-Newton 
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Standard Gaussian Least 
Squares 
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Dynamic Covariance Scaling 
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Scaling Parameter  
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Dynamic Covariance Scaling 
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Dynamic Covariance Scaling 

Both have  
squared error 
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Dynamic Covariance Scaling 

Original 
error 

Scaled 
error 
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Dynamic Covariance Scaling 

Linearization 
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Dynamic Covariance Scaling 
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Optimizing With Outliers  

 Assuming a Gaussian error in the 
constraints is not always realistic 

 Large errors are problematic  
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Robust M-Estimators 

 Assume non-normally-distributed 
noise 

 Intuitively: PDF with “heavy tails” 

       function used to define the PDF 

 

 

 Minimizing the neg. log likelihood  
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Different Rho Functions 

 Gaussian: 

 Absolute values (L1 norm): 

 Huber M-estimator 

 

 

 

 Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, …)  
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Huber 

 Mixture of a quadratic and a linear 
function 
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Different Rho Functions 

L1 norm Huber Tukey 

Cauchy Blake-Zisserman Corrupted G. 



35 

MM Cost Function For Outliers 
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Robust Estimation 

 Choice of the rho function depends on 
the problem at hand 

 Huber function is often used 

 MM for outlier handling is similar to a 
corrupted Gaussian 

 MM additionally supports multi-model 
constraints 

 Dynamic Covariance Scaling is a 
robust M-estimator 
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Conclusions 

 Sum of Gaussians cannot be used 
easily in the optimization framework 

 Max-Mixture formulation approximates 
the sum by the max operator  

 This allows for handling data 
association ambiguities and failures 

 Minimal performance overhead 

 Minimal code changes for integration 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 

Cyrill Stachniss, 2014 
     cyrill.stachniss@igg.uni-

bonn.de 


