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Least Squares in General

= Minimizes the sum of the squared
errors

= ML estimation in the Gaussian case

Problems:
= Sensitive to outliers
= Only Gaussians (single modes)



Data Association Is Ambiguous
And Not Always Perfect

= Places that look identical
= Similar rooms in the same building
» Cluttered scenes

= GPS multi pass (signal reflections)



e

3D worl

100

belief about the

robot’s pose
Courtesy: E. Olson 4



Such Situations Occur In Reality
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Committing To The Wrong Mode
Can Lead to Mapping Failures
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Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1
p(z | x) = neXp(__eTQmew)

$

1 7
p(z | x) = Zwknk GXD(——ekawkewk)
k
Sum of Gaussians with k modes



Problem

= During error minimization, we consider
the negative log likelihood

1
— log p(Z ‘ X) = Eegﬂwew — logn

$

1
—logp(z | x) = — 109 » wgny exp(—Eeg;'k ik Ciji)

k
The log cannot be moved inside the sum!
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Max-Mixture Approximation

= [nstead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

L 7
p(Z ‘ X) — Zwknk eXp(__ezjkﬂZ]keijk)
k
~ ) Qe
~ mkaxwknkexp( ~Ciji i7.€ij;.)
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Log Likelihood Of The Max-
Mixture Formulation

= The log can be moved inside the max

operator

1 T
p(Z ‘ X) = mkaxwknk exD(_EezijijeZ]k)

4

1
logp(z | x) ~ mkax —QGg;szjkezjk + log(wyng)

1
or: —logp(z|x) ~ mk 5 gkﬂwkewk log (wng)
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Integration

= With the max-mixture formulation, the
log likelihood again results in local
quadratic forms

= Easy to integrate in the optimizer:
1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)
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Performance (Gauss vs. MM)
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Runtime

Run time anaIyS|s for Intel Dataset
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MM For Outlier Rejection

Bi-modal false loop closure Multi-modal with null-hypothesis Bi-modal odometry slippage
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Max-Mixture and Outliers

= MM formulation is useful for multi-
model constraints (D.A. ambiguities)

= MM is also a handy tool outliers
(D.A. failures)

= Here, one mode represents the edge
and a second model uses a flat
Gaussian for the outlier hypothesis
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Performance (1 outlier

Gauss-Newton MM Gauss-Newton

19



Performance (10 outliers)
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Performance (100 outliers)
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Standard Gaussian Least
Squares
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Dynamic Covariance Scaling
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Scaling Parameter
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Dynamlc Covariance Scallng
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Dynamlc Covariance Scallng
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Dynamic Covariance Scaling
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Optimizing With Outliers

= Assuming a Gaussian error in the
constraints is not always realistic

= Large errors are problematic
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Robust M-Estimators

= Assume non-normally-distributed
noise

= Intuitively: PDF with “heavy tails”
= p(e) function used to define the PDF
p(e) = exp(—p(e))
= Minimizing the neq. log likelihood
x* = argmin_p(e;(x))
1
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Different Rho Functions

= Gaussian:p(e) = e&°

= Absolute values (L1 norm):p(e) = e
= Huber M-estimator

(2
if le|] < c

&
2
| c(Je] —5) otherwise

ple) = <

= Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, ...)
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Huber

= Mixture of a quadratic and a linear
function
r 62 ]
5 if le] < c
e) —= (K 2
ple) c(le| —5) otherwise
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Different Rho Functions
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MM Cost Function For Outliers

* Max Mixture
* Corrupted Gaussian
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Robust Estimation

= Choice of the rho function depends on
the problem at hand

= Huber function is often used

= MM for outlier handling is similar to a
corrupted Gaussian

= MM additionally supports multi-model
constraints

= Dynamic Covariance Scaling is a
robust M-estimator
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Conclusions

= Sum of Gaussians cannot be used
easily in the optimization framework

= Max-Mixture formulation approximates
the sum by the max operator

= This allows for handling data
association ambiguities and failures

= Minimal performance overhead
= Minimal code changes for integration
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—39
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