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Stochastic Gradient Descent

A Minimize the error individually for each
constraint (decomposition of the problem
Into sub -problems)

A Solve one step of each sub  -problem
A Solutions might be contradictory

A The magnitude of the correction decreases
with each iteration

A Learning rate to achieve convergence

Qselected constraint
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Preconditioned SGD

A Minimize the error individually for each

constraint

A Solve one step of each sub
A A solution is found when an equilibrium is

reached

-problem

A Update rule for a single constraint:
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Node Parameterization

A How to represent the nodes in the graph?

A Impacts which parts need to be updated for
a single constraint update

A Transform the problem into a different
space so that:
A the structure of the problem is exploited
A the calculations become fast and easy

parameters | | poses parameters

} < | '

X = Tg(p) — Pp = g_l(X) X = arg}gmn ZGQJ(X)TQZJGQJ(X)
1,]

Mapping function transformed problem




Parameterization of Olson

A Incremental parameterization:

Lj = Pi — Pi—1
1 1

parameters | | poses

A Directly related to the trajectory

A Problem: for optimizing a constraint
between the nodes | and k, one needs
toupdatesthenodes 1, €&, Kk 1 gl
the topology of the environment



Alternative Parameterization

A Exploit the topology of the space to
compute the parameterization

Aldea: Loops should be one sub -
problem

A Such a parameterization can be
extracted from the graph topology
itself



Tree Parameterization

A How should such a problem
decomposition look like?




Tree Parameterization

A Use a spanning tree!
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Tree Parameterization

A Construct a spanning tree from the graph
A Mapping between poses and parameters

X = Pp_arent(z)P

A Error of a constraint in the new
parameterization

Eij = Ai—jl UpChain_1 DownChain

Only variables along the path
/ of a constraint  are involved in
the update
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Stochastic Gradient Descent
With The Tree Parameterization

A The tree parameterization leads to several
smaller problems  which are either:
A constraints on the tree ( open loop )
A constraints not in the tree ( a loop closure )

A Each SGD equation independently solves
one sub -problem at a time

A The solutions are integrated via the learning
rate




Computation of the Update Step

A 3D rotations are non  -linear

A Update according to the SGD equation
may lead to poor convergence

—1 97T
Ax = \H 1Jijﬂijrij

A ldea: distribute a fraction of the
residual along the parameters so that
the error of that constraint Is reduced
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Computation of the Update Step

Alternative update In the spirit  of the
SGD: Smoothly deform the path along

the constraints so that the error Is

reduced

PZ-A,UC ORg (GD%D Q

o ™ T
"-.‘_Q Distribute the @ Distribute the é)
rotational error translational error a)
be !

14



Rotational Error

A In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

A Find a set of incremental rotations so that
the following equality holds:

- / R/
R1 Ro Ry, T R R n
_ t . T
rotations along the path | fraction of the _
rotational corrected terms for the rotations
residual in the
local frame
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Rotational Residual

A Let the first node be the reference
frame

A We want a correcting rotation around
a single axis

A Let Ape the orientation of the i-th
node In the global reference frame
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Rotational Residual

A Written as a rotation in global frame

A with a decomposition of the rotational
residual into a chain of incremental
rotations obtained by spherical linear
Interpolation (  slerp)

Q = Q1Q2---Qn

Q. = slerp(Q,ui_1)" slerp(Q, uy) welo...

A Slerp designed for 3d animations:
constant speed motion along a circle
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What is the SLERP?

A Spherical LinEar inteRPolation

A Introduced by Ken  Shoemake for
Interpolations in 3D animations

A Constant speed motion along a circle
arc with unit radius
A Properties:
R’ = slerp(R,u)
axisOf (R/) axisOf (R)
angleOf(R) u angleOf(R)
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Rotational Residual

A Given the Qpve obtain
Al = Q1. QpAr = Q114
A as well as
Rl = AL, 4,
A and can then solve:

R} Q1R1
R (Q1R1)'Q1:0R1.2 = R{1 Q1 Q1Q2R1 R

R, = [(Ri:p-1)' QLR1.1_1]Rs
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Rotational Residual

A Resulting update rule

R;c — (Rl:k—l)TQle:k

A It can be shown that the change in

each rotational residual
/

A This bounds a potential

IS bounded by
eOf(Qp)]

y Introduced

error at node k when correcting a
chain of poses including k
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How to Determine u,?

A The u, describe the distribution of the error

Q. = slerp(Q,us_1)"slerp(Q, uz) we[0... ]

A Consider the uncertainty of the constraints

- 1-1
wy, = min (1, A|P;;]) Sodt | Y

_mEPZ'j/\mSk \7/

d,, = Z min |eigen (2, )]

l,m)

all constraints connecting m

A This assumes roughly spherical covariances!
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Distributing the Translational
Error

A That is trivial
A Just scale the x, y, z movements
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Summary of the Algorithm

A Decompose the problem according to
the tree parameterization

A Loop:

A Select a constraint

ARandomly or sample inverse proportional to
the number of nodes involved in the update

A Compute the nodes involved in update
ANodes according to the parameterization tree

A Reduce the error for this sub -problem
AReduce the rotational error ( slerp )
AReduce the translational error
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Complexity

A In each iteration, the approach
handles all constraints

A Each constraint optimization requires
to update a set of nodes (on average:
the average path length according to
the tree)

o

# constraints ~ avg. path length
(parameterization tree)
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Cost of a Constraint Update

Operations per constraint

18

16 |
14 |
12 |

10

8
6
4
2
0

"Olson’s apprc;ach
Our approach, original problem =s=sss====-

e —

500000 le+06 1.5e+06

Number of Nodes

~ O(MIlog(N))

2e+06

25



Node Reduction

A Complexity grows with the length of
the trajectory

A Combine constraints between nodes

If the robot is well -localized
Q; = o)+l
Zij = Qi_jl (Qg)zfjl)—l—ﬂg?zg))

A Similar to adding rigid constraints

A Then, complexity depends on the size
of the environment (not trajectory)
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Spheres with Different Noise

initialization
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e
eyt -
N INZTE Pl
(L5 /{/:;,}',
e

el

Wil

#
o

2
LTI
e ;
ooz,
Ty ik

W

7
o]

300 iterations

o 5
e e
o

o
2 v:ll"lﬂ”t” ,,’.,
17

o
past
VIR BREL _“\,\_’.’/‘;}44
S,

error/constraint

error/constraint

error/constraint

1000
100
10

0.1
0.01

100 150 200 250 300
interation

100000
10000
1000
100
10

1F

0.1

[=}
wn
(=}

100 150 200 250 300
interation

100000
10000
1000
100

100 150 200 250 300
interation

28



Mapping the EPFL Campus

EPFL campus

A 10km long trajectory  with 3D laser scans
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Mapping the EPFL Campus
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TORO vs. Olson s Approach

Olson s approach

>

1 iteration 10 iterations 50 iterations 100 iterations 300 iterations

TORO
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TORO vs. Olson

eITor per constraint
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Time Comparison

execution time per iteration [s]
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Robust to the Initial Guess

A Random initial guess

A Intel datatset as the basis for 16 floors
distributed over 4 towers

Initial configuration Intermediate result final result
(50 iterations)

34



