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Robot Mapping  

TORO – Gradient Descent 
for SLAM  

Gian Diego Tipaldi, Luciano Spinello, 
Wolfram Burgard 
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Stochastic Gradient Descent 

 Minimize the error individually for each 
constraint (decomposition of the problem 
into sub-problems) 

 Solve one step of each sub-problem  

 Solutions might be contradictory 

 The magnitude of the correction decreases 
with each iteration 

 Learning rate to achieve convergence 

[First used in the SLAM community by Olson et al., ’06] 

selected constraint 
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distribute the error over  
a set of involved nodes 
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Preconditioned SGD 

 Minimize the error individually for each 
constraint  

 Solve one step of each sub-problem  

 A solution is found when an equilibrium is 
reached 

 Update rule for a single constraint: 

 
Information matrix Previous solution 

residual Jacobian 

Hessian 

Learning rate Current solution 
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Node Parameterization 

 How to represent the nodes in the graph? 

 Impacts which parts need to be updated for 
a single constraint update 

 Transform the problem into a different 
space so that: 

 the structure of the problem is exploited 

 the calculations become fast and easy  

Mapping function 

poses parameters 

transformed problem 

parameters 
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Parameterization of Olson 

 Incremental parameterization: 

 

 

 

 Directly related to the trajectory  

 Problem: for optimizing a constraint 
between the nodes i and k, one needs 
to updates the nodes i, …, k ignoring 
the topology of the environment 

 

poses parameters 
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Alternative Parameterization 

 Exploit the topology of the space to 
compute the parameterization 

 Idea: “Loops should be one sub-
problem” 

 Such a parameterization can be 
extracted from the graph topology 
itself 
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Tree Parameterization 

 How should such a problem  
decomposition look like? 
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Tree Parameterization 

 Use a spanning tree! 
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Tree Parameterization 

 Construct a spanning tree from the graph 

 Mapping between poses and parameters 

 
 Error of a constraint in the new 

parameterization 

Only variables along the path  
of a constraint are involved in  
the update 
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Stochastic Gradient Descent 
With The Tree Parameterization 

 The tree parameterization leads to several 
smaller problems which are either: 

 constraints on the tree (“open loop”) 

 constraints not in the tree (“a loop closure”) 

 Each SGD equation independently solves 
one sub-problem at a time 

 The solutions are integrated via the learning 
rate 
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Computation of the Update Step 

 3D rotations are non-linear  

 Update according to the SGD equation 
may lead to poor convergence  

 SGD update: 

 

 

 Idea: distribute a fraction of the 
residual along the parameters so that 
the error of that constraint is reduced 
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Computation of the Update Step 

Alternative update in the “spirit” of the 
SGD: Smoothly deform the path along 
the constraints so that the error is 
reduced 

Distribute the 
rotational error 

Distribute the 
translational error 
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Rotational Error 

 In 3D, the rotational error cannot be simply 
added to the parameters because the 
rotations are not commutative 

 Find a set of incremental rotations so that 
the following equality holds: 

 

rotations along the path fraction of the 
rotational 
residual in the 
local frame 

corrected terms for the rotations 
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Rotational Residual 

 Let the first node be the reference 
frame 

 We want a correcting rotation around 
a single axis 

 Let      be the orientation of the i-th 
node in the global reference frame 
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Rotational Residual 

 Written as a rotation in global frame 

 

 with a decomposition of the rotational 
residual into a chain of incremental 
rotations obtained by spherical linear 
interpolation (slerp) 

 

 

 Slerp designed for 3d animations: 
constant speed motion along a circle 
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What is the SLERP? 

 Spherical LinEar inteRPolation 

 Introduced by Ken Shoemake for 
interpolations in 3D animations 

 Constant speed motion along a circle 
arc with unit radius 

 Properties: 
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Rotational Residual 

 Given the     , we obtain 

 

 as well as 

 

 and can then solve: 
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Rotational Residual 

 Resulting update rule 

 
 It can be shown that the change in 

each rotational residual is bounded by 

 
 This bounds a potentially introduced 

error at node k when correcting a 
chain of poses including k 
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How to Determine uk? 

 The uk describe the distribution of the error  

 
 Consider the uncertainty of the constraints 

 

 

 

 

 

 

 This assumes roughly spherical covariances! 

all constraints connecting m 
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Distributing the Translational 
Error 

 That is trivial 

 Just scale the x, y, z movements 
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Summary of the Algorithm 

 Decompose the problem according to 
the tree parameterization 

 Loop: 

 Select a constraint 

 Randomly or sample inverse proportional to  
the number of nodes involved in the update 

 Compute the nodes involved in update 

 Nodes according to the parameterization tree 

 Reduce the error for this sub-problem 

 Reduce the rotational error (slerp) 

 Reduce the translational error 
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Complexity 

 In each iteration, the approach 
handles all constraints 

 Each constraint optimization requires 
to update a set of nodes (on average: 
the average path length according to 
the tree) 

#constraints avg. path length 
(parameterization tree) 
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Cost of a Constraint Update 
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Node Reduction 

 Complexity grows with the length of 
the trajectory 

 Combine constraints between nodes 
if the robot is well-localized 

 

 
 Similar to adding rigid constraints 

 Then, complexity depends on the size 
of the environment (not trajectory) 
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Simulated Experiment 

 Highly connected 
graph 

 Poor initial guess 

 2200 nodes 

 8600 constraints 



28 

Spheres with Different Noise 
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EPFL campus 

Mapping the EPFL Campus 

 10km long trajectory with 3D laser scans 
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Mapping the EPFL Campus 
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TORO vs. Olson’s Approach 

TORO 

Olson’s approach 

1 iteration             10 iterations                50 iterations              100 iterations          300 iterations 
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TORO vs. Olson’s Approach 
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Time Comparison 
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Robust to the Initial Guess 

 Random initial guess 

 Intel datatset as the basis for 16 floors 
distributed over 4 towers 

initial configuration intermediate result final result  
(50 iterations) 
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Drawbacks of TORO 

 The slerp-based update rule optimizes 
rotations and translations separately 

 It assume roughly spherical 
covariance ellipses 

 Slow convergence speed close to 
minimum 

 No covariance estimates 
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Conclusions 

 TORO - Efficient maximum likelihood 
estimate for 2D and 3D pose graphs  

 Robust to bad initial configurations 

 Efficient technique for ML map 
estimation (or to initialize GN/LM) 

 Works in 2D and 3D 

 Scales up to millions of constraints  

 Available at OpenSLAM.org 
http://www.openslam.org/toro.html 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Giorgio Grisetti, Wolfram Burgard, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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