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Stochastic Gradient Descent

= Minimize the error individually for each
constraint (decomposition of the problem
into sub-problems)

= Solve one step of each sub-problem
= Solutions might be contradictory

= The magnitude of the correction decreases
with each iteration

= Learning rate to achieve convergence

Qselected constraint

[First used in the SLAM community by Olson et al., ' 06]
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Stochastic Gradient Descent
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= Solve one step of each sub-problem
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with each iteration
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Preconditioned SGD

= Minimize the error individually for each

constraint

= Solve one step of each sub-problem

= A solution is found when an equilibrium is

reached

= Update rule for a single constraint:

Previous solution

Hessian

Information matrix

l

t+1 Tt 11T v

T

!

T

T

Current solution

Learning rate

Jacobian

residual




Node Parameterization

= How to represent the nodes in the graph?

= Tmpacts which parts need to be updated for
a single constraint update

= Transform the problem into a different

space so that:
= the structure of the problem is exploited

= the calculations become fast and easy

parameters

parameters | | poses
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Mapping function transformed problem




Parameterization of Olson

= Incremental parameterization:

Lj = Pi — Pi—1
1 1

parameters | | poses

= Directly related to the trajectory

= Problem: for optimizing a constraint
between the nodes i and k, one needs
to updates the nodes i, ..., k ignoring
the topology of the environment



Alternative Parameterization

= Exploit the topology of the space to
compute the parameterization

= Jdea: “Loops should be one sub-
problem”

= Such a parameterization can be
extracted from the graph topology
itself



Tree Parameterization

= How should such a problem
decomposition look like?




Tree Parameterization

= Use a spanning tree!
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Tree Parameterization

= Construct a spanning tree from the graph
= Mapping between poses and parameters

X = Pp_arent(z)P

= Error of a constraint in the new
parameterization

Eij = Ai—jl UpChain_1 DownChain

Only variables along the path
of a constraint are involved in
the update
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Stochastic Gradient Descent
With The Tree Parameterization

= The tree parameterization leads to several
smaller problems which are either:
= constraints on the tree (“open loop™)
= constraints not in the tree (“a loop closure™)

= Fach SGD equation independently solves
one sub-problem at a time

= The solutions are integrated via the learning
rate




Computation of the Update Step

= 3D rotations are non-linear

= Update according to the SGD equation
may lead to poor convergence

= SGD update:
AX = )\H_ng;Qijrij
= Jdea: distribute a fraction of the

residual along the parameters so that
the error of that constraint is reduced
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Computation of the Update Step

Alternative update in the “spirit” of the
SGD: Smoothly deform the path along
the constraints so that the error is
reduced
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Rotational Error

= In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

» Find a set of incremental rotations so that
the following equality holds:

RiRy---RnB = R{R5---R),

A\
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t t t 1 T I
rotations along the path | fraction of the

rotational corrected terms for the rotations

residual in the
local frame
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Rotational Residual

» et the first node be the reference
frame

= We want a correcting rotation around
a single axis

= Let A; be the orientation of the i-th
node in the global reference frame
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Rotational Residual

= Written as a rotation in global frame

= with a decomposition of the rotational
residual into a chain of incremental

rotations obtained by spherical linear
interpolation (slerp)

Q Q1Q2 - Qn
Q. = slerp(Q,ui_1)" slerp(Q, uy) we [0... )]

= Slerp designed for 3d animations:
constant speed motion along a circle



What is the SLERP?

= Spherical LinEar inteRPolation

= Introduced by Ken Shoemake for
interpolations in 3D animations

= Constant speed motion along a circle
arc with unit radius

= Properties:

R’ = slerp(R,u)
axisOf(R') = axisOf(R)
angleOf(R') = w angleOf(R)
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Rotational Residual

= Given the @, we obtain
Al = Q1. QpAr = Q114
= as well as
Ry = AL 4
= and can then solve:

= @1
= (Q1R1)"Q1:20R1.0 = R{1Q] Q1Q2R1R>

X, X
N~~~
|

R, = [(Ri:p-1)' QLR1.1_1]Rs
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Rotational Residual

= Resulting update rule
R, = (Rl:k—l)TQle:k

= [t can be shown that the change in
each rotational residual is bounded by

Ary 1 < |angleOf(Qy)|

= This bounds a potentially introduced
error at node k when correcting a
chain of poses including k
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How to Determine u,?

= The u, describe the distribution of the error

Q. = slerp(Q,us_1)"slerp(Q, uz) we[0... ]

= Consider the uncertainty of the constraints

- 1-1
wy, = min (1, A|P;;]) Sodt | Y

_mEPZ'j/\mSk \7

d,, = Z min |eigen (2, )]

l,m)

all constraints connecting m

= This assumes roughly spherical covariances!
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Distributing the Translational
Error

= That is trivial
= Just scale the X, y, z movements
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Summary of the Algorithm

= Decompose the problem according to
the tree parameterization

= Loop:

» Select a constraint

= Randomly or sample inverse proportional to
the number of nodes involved in the update

= Compute the nodes involved in update
= Nodes according to the parameterization tree

= Reduce the error for this sub-problem
= Reduce the rotational error (slerp)
= Reduce the translational error
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Complexity

= In each iteration, the approach
handles all constraints

= Each constraint optimization requires
to update a set of nodes (on average:
the average path length according to
the tree)

o

#constraints avg. path length

(parameterization tree)
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Cost of a Constraint Update

Operations per constraint
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Node Reduction

= Complexity grows with the length of
the trajectory

= Combine constraints between nodes
if the robot is well-localized

(ij = QS) + Q,EJQ)

= Similar to adding rigid constraints

= Then, complexity depends on the size
of the environment (not trajectory)
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Simulated Experiment
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Spheres with Different Noise
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Mapping the EPFL Campus

EPFL campus

= 10km long trajectory with 3D laser scans
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Mapping the EPFL Campus
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TORO vs. Olson’s Approach

Olson’s approach

1 iteration 10 iterations 50 iterations 100 iterations 300 iterations

TORO
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TORO vs. Olson’s Approach
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Time Comparison

execution time per iteration [s]
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Robust to the Initial Guess

= Random initial guess
» Intel datatset as the basis for 16 floors

distributed over 4 towers
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Drawbacks of TORO

= The slerp-based update rule optimizes
rotations and translations separately

= [t assume roughly spherical
covariance ellipses

= Slow convergence speed close to
minimum
= NO covariance estimates
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Conclusions ﬁ

= TORO - Efficient maximum likelihood
estimate for 2D and 3D pose graphs

= Robust to bad initial configurations

= Efficient technique for ML map
estimation (or to initialize GN/LM)

= Works in 2D and 3D
= Scales up to millions of constraints

= Available at OpenSLAM.org
http://www.openslam.org/toro.html

36



Literature
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Giorgio Grisetti, Wolfram Burgard, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
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