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Robot Mapping  

SLAM Front-Ends 

Gian Diego Tipaldi, Luciano Spinello, 
Wolfram Burgard 



2 Robot pose Measurement 

Graph-Based SLAM 

 Measurements connect the nodes 
through odometry and observations 
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Graph-Based SLAM 

 Measurements connect the nodes 
through odometry and observations 

 How to obtain the measurements? 

 

 

 

Robot pose Measurement 
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Interplay between Front-End 
and Back-End 

Graph 
Construction 

(Front-End) 

Graph 
Optimization 

(Back-End) 

raw 
data graph  

(nodes & edges) 

node positions 

today 
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Measurements From Matching  

 Measurements can be obtained by 
matching observations 

 

Popular approaches 

 Dense matching  

 Point-to-point matching 

 Feature-based matching 
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Where to Search for Matches?  

 Consider uncertainty of the nodes with 
respect to the current one 

Positional 
uncertainty 
with respect 

to A 

A 

B1 

sensor 
ranges 

B2 

Views may 
overlap 

Views cannot 
overlap Courtesy: E. Olson 
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Note on the Uncertainty 

 In graph-based SLAM, computing the 
uncertainty relative to A requires 
inverting the Hessian H 

 Fast approximation by Dijkstra 
expansion (“propagate uncertainty 
along the shortest path in the graph”) 

 Conservative estimate 
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Do you Recall Scan Matching? 

Maximize the likelihood of the current 
pose relative to the previous pose and 
map 

robot motion current measurement 

map constructed so far 
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Sensor Matching as Front-End 
 

 Estimate uncertainty of nodes relative 
to the current pose 

 Get previous observations in the 
relevant area 

 Match the current observations with 
the previous ones 

 Evaluate match  

 Accept match based on a threshold 
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Correlative Matching 

Courtesy: E. Olson 
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Correlative Matching 

Courtesy: E. Olson 
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Problems 

 Many matching to be performed 

 Might be slow if many candidate 
locations 

 Accuracy up to discretizations 

 Uncertainties slow to compute 
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Point-to-Point Matching (ICP) 
 

 Estimate uncertainty of nodes relative 
to the current pose 

 Sample poses in relevant area 

 Apply Iterative Closest Point algorithm 

 Evaluate match  

 Accept match based on a threshold 
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Point-to-Point Matching (ICP) 

 Given two corresponding point sets: 

 Wanted: Translation t and rotation R 
that minimize:   

 Here,
    

are corresponding points and
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Key Idea 

If the correct correspondences are 
known, the correct rotation/translation 
can be calculated in closed form 
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Center of Mass 

and 

are the centers of mass of the two sets 

Idea: 

Subtract the center of mass from every 
point in the two point sets  

and 
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Singular Value Decomposition 

Let                          , we denote the 
singular value decomposition (SVD) of 
W by: 

 

 

 

 

Where                    are orthogonal, and 
                      are the singular values  
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SVD 

Theorem (without proof): 
 

If rank(W) = 3, the optimal solution of 
E(R,t) is unique and is given by: 
 

The minimal value of error function is: 
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ICP with Unknown Data 
Association 

If the correct correspondences are not 
known, it is generally impossible to 
determine the optimal relative rotation 
and translation in one step 
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Iterative Closest Point (ICP) 
Algorithm 

 Idea: Iterate to find alignment 

 Iterative Closest Points  
[Besl & McKay 92] 

 Converges if starting positions are  
“close enough” 
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Basic ICP Algorithm 

 Determine corresponding points 

 Compute R and t via SVD 

 Apply R and t to the points of the set 
to be registered 

 Compute the error E(R,t) 

 If error decreased and > threshold 

 Repeat these steps 

 Stop and output final alignment, 
otherwise 
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Problems 

 ICP is sensitive to the initial guess 

 Local minima 

 Ambiguities in the environment 
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Feature-Based Matching 

 Environment abstraction 

 

 

 

 

 Sensor abstraction 

 

 

 

Indoor (fr-079) 

[Courtesy of G. Grisetti] 

Outdoor (Victoria park) 

[Courtesy of M. Kaess] 

Laser Camera 

[Courtesy of K. Mikolajczyk] 
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Feature-Based Matching 

 Detect salient locations in the data 

 Describe them with local information 

 Match the set of features considering 
their appearance 

 

 Features available 

 Laser: FLIRT, SHOT, NARF,… 

 Camera: SIFT, SURF, BRISK, FAST,… 
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FLIRT Detector 

 Points define a curve in 

 Smoothing at different scales 

 

 Find points of maximum curvature 

 

 Sampling invariance 

  

 



26 

FLIRT Detector – Example  

Indoor (FR 079) Outdoor (Victoria Park) 
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FLIRT Descriptor 

 We have range data 

 Solution:    - Grid 

 Polar occupancy grid 

 Free space 

 Ray tracing 

 Bayesian estimation using   distributions 

 Mean and variance estimation 

 

 

Mean Variance 
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Feature Matching (RANSAC) 

Matching algorithm robust to outliers 

Iteratively perform: 

1. Sample a minimal solution set 

2. Compute the transformation 

3. Compute the inlier set 

4. If inlier set > than previous, update 

 

The number of iterations depends on 
the dimension of the minimal set 
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RANSAC Iterations 

 Let q be the probability of an inlier 
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RANSAC Iterations 

 Let q be the probability of an inlier 
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RANSAC Iterations 

 Let q be the probability of an inlier 

 

 

 

 The probability of outliers in the MSS  
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RANSAC Iterations 

 Let q be the probability of an inlier 

 

 

 

 The probability of outliers in the MSS  
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RANSAC Iterations 

 Let q be the probability of an inlier 

 

 

 

 The probability of outliers in the MSS  

 

 The number of iterations is given by 
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Problems 

 Local minima 

 Ambiguities in the environment 
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Problems 

 Local minima 

 Ambiguities in the environment 

 

 

 

 Dealing with ambiguous areas in an 
environment is essential for robustly 
operating robots 
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Ambiguities - Global Ambiguity 

 B is inside the uncertainty ellipse of A 

 Are A and B the same place? 

B 
A 

A’s 
uncertainty 

Courtesy: E. Olson 
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Ambiguities - Global Ambiguity 

 B is inside the uncertainty ellipse of A 

 A and B might not be the same place 

B 
A 

?
?
? 

A’s 
uncertainty 

Courtesy: E. Olson 
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Ambiguities - Global Ambiguity 

 B is inside the uncertainty ellipse of A 

 A and B are not the same place 

A’s 
uncertainty 

B 
A 

Courtesy: E. Olson 



60 

Ambiguities - Global Sufficiency  

 B is inside the uncertainty ellipse of A 

 The is no other possibility for a match 

B 
A 

A’s 
uncertainty 

Courtesy: E. Olson 
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Ambiguities - Local Ambiguity  

 “Picket Fence Problem”: largely 
overlapping local matches 

A’s 
uncertainty 

B 

A 

Courtesy: E. Olson 
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Global Match Criteria 

1. Global Sufficiency: There is no possible 
disjoint  match (“A is not somewhere else 
entirely”) 

2. Local unambiguity: There are no 
overlapping matches (“A is either here or 
somewhere else entirely”) 

Both need to be satisfied for a match 

 B 
A 

A’s 
uncertainty Courtesy: E. Olson 
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Olson’s Proposal  

Pose Matcher 

Topological 
Grouping 

SCGP 

Pose-to-Pose rigid-
body transformations 

Sets of pose-to-pose 
matches relating 

nearby poses 

Locally consistent and 
unambiguous matches 

Global  
Ambiguity Test 

Globally consistent and 
unambiguous matches 

(“Loop Closures”) 

SLAM 
Backend 

Prior 

Criterion 
2 

Criterion 
1 

Courtesy: E. Olson 
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Topological Grouping 

 Group together topologically-related pose-
to-pose matches to form local matches 

 Each group asks a “topological” question:  
Do two local maps match? 

Local Match Group 1 

Local Match Group 2 Courtesy: E. Olson 
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Locally Unambiguous Matches 

Goal: 

Unfiltered Local Match  
(set of pose-to-pose matches) 

Locally consistent and 
unambiguous local match 

(set of pose-to-pose matches) 
Courtesy: E. Olson 
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Locally Consistent Matches 

 Correct pose-to-pose hypotheses  
must agree with each other  

 Incorrect pose-to-pose hypotheses  
tend to disagree with each other 

 Find subset of self-consistent of 
hypotheses 

 Multiple self-consistent subsets, are  
an indicator for a “picket fence”! 
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Do Two Hypotheses Agree? 

 Consider two hypotheses i and j in the set: 

 

 

 

 Form a loop using edges from the prior 
graph 

 

hi hj 

hi hj 

 
Rigid-body transformation around the 

loop should be the identity matrix 
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Idea of Olson’s Method  

 Form pair-wise consistency matrix A 

Hypothesis Set 

hi hj 

i 

j 

A = 

Courtesy: E. Olson 
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Single Cluster Graph 
Partitioning 

 Idea: Identify the subset of consistent 
hypotheses 

 Find the best indicator vector 
(represents a subset of the 
hypotheses) 
 

 

 

 

 

Indicator vector v 
i j vi = 1 if hi is correct, 

        0 if hi is incorrect 

Courtesy: E. Olson 
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Single Cluster Graph 
Partitioning 

 Identify the subset of hypotheses that 
is maximally self-consistent 

 Which subset v has the greatest 
average pair-wise consistency λ? 

 

 

 

 Densest subgraph problem 

 

 

Sum of all pair-wise consistencies 
between hypotheses in v 

Number of hypotheses in v 

Gallo et al 1989 

Courtesy: E. Olson 
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Consistent Local Matches 

 We want find v that maximizes λ(v) 
 

 

 Treat as continuous problem 

 Derive and set to zero 

 

 

 Which leads to (for symmetric A) 
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Consistent Local Matches 

               : Eigenvalue/vector problem 

 The dominant eigenvector v1 
maximizes  

 

 

 The hypothesis represented by v1  
is maximally self-consistent subset 

 If λ1/λ2 is large (e.g., λ1/λ2>2) then v1 
is regarded as locally unambiguous 

 Discretize v1 after maximization 
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Global Consistency 

 Correct method: Can two copies of A be 
arranged so that they both fit inside the 
covariance ellipse? 

 Approximation: Is the dimension of A at 
least half the length of the dominant axis of 
the covariance ellipse? 

 Potential failures for narrow local matches 

B 
A 

Courtesy: E. Olson 
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Olson’s Proposal  

Pose Matcher 

Topological 
Grouping 

SCGP 

Pose-to-Pose rigid-
body transformations 

Sets of pose-to-pose 
matches relating 

nearby poses 

Locally consistent and 
unambiguous matches 

Global  
Ambiguity Test 

Globally consistent and 
unambiguous matches 

(“Loop Closures”) 

SLAM 
Backend 

Prior 

Criterion 
2 

Criterion 
1 

Courtesy: E. Olson 
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Example 
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Conclusions 

 Matching local observations is used to 
generate pose-to-pose hypotheses 

 Local matches assembled from pose-
to-pose hypotheses 

 Local ambiguity (“picket fence”) can 
be resolved via SCGP’s confidence 
metric 

 Positional uncertainty: more 
uncertainty requires more evidence 
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Literature 

FLIRT Features 

 Tipaldi, Arras: “FLIRT -- Interest 
Regions for 2D Range Data” 

 

Spectral Clustering 

 Olson: “Recognizing Places using 
Spectrally Clustered Local Matches” 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Giorgio Grisetti, Bastian Steder, Rainer 
Kümmerle, Patrick Pfaff, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 Cyrill Stachniss, 2014 
     cyrill.stachniss@igg.uni-

bonn.de 


