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Graph-Based SLAM

= Measurements connect the nodes
through odometry and observations

P Robot pose -==p Measurement



Graph-Based SLAM

= Measurements connect the nodes
through odometry and observations

= How to obtain the measurements?

P Robot pose -==p Measurement



Interplay between Front-End
and Back-End
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Measurements From Matching

= Measurements can be obtained by
matching observations

Popular approaches

= Dense matching

= Point-to-point matching
= Feature-based matching



Where to Search for Matches?

= Consider uncertainty of the nodes with
respect to the current one

Positional
sensor upcerta/n ty
ranges with respect
ST to A ’

Views may Views cannot
Courtesy: E. Olson overlap overlap



Note on the Uncertainty

= In graph-based SLAM, computing the
uncertainty relative to A requires
inverting the Hessian H

= Fast approximation by Dijkstra
expansion (“propagate uncertainty
along the shortest path in the graph”)

= Conservative estimate



Do you Recall Scan Matching?

Maximize the likelihood of the current
pose relative to the previous pose and
map

T, = argmax {p(zt xe,meq) p(xy | up_1, Xy 1)}

] /

current measurement robot motion

map constructed so far



Sensor Matching as Front-End

= Estimate uncertainty of nodes relative
to the current pose

= Get previous observations in the
relevant area

= Match the current observations with
the previous ones

= Evaluate match
= Accept match based on a threshold



Correlative Matching
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Correlative Matching

Courtesy: E. Olson
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Problems

= Many matching to be performed

= Might be slow if many candidate
locations

= Accuracy up to discretizations
= Uncertainties slow to compute
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Point-to-Point Matching (ICP)

= Estimate uncertainty of nodes relative
to the current pose

= Sample poses in relevant area

= Apply Iterative Closest Point algorithm
= Evaluate match

= Accept match based on a threshold
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Point-to-Point Matching (ICP)

= Given two corresponding point sets:
X = {x1q, ---ang;}
P ={pi1,---,PN,}

» Wanted: Translation t and rotation R
that minimize:

N.
1 p
E(R,t) =~ 3 [l — Bpi — t||?

Here, z; and p; are corresponding points
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Key Idea

If the correct correspondences are
known, the correct rotation/translation
can be calculated in closed form
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Center of Mass

1 N 1
Ux:—zxi and ,U«p:—zpi
T =1 Np ;=1

are the centers of mass of the two sets

Idea:

Subtract the center of mass from every
point in the two point sets

X' = {z; — pa} = {z}}

, , and
P' = {p; — np} = {p}}
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Singular Value Decomposition

Let W = Zf\fl ,’Lp;T we denote the
singular value decomposition (SVD) of
W by:

ci O O
W=U| 0 oo 0 |V
0 0 o3

Where U,V € R3%3 are orthogonal, and
o1 = 0o > 03 are the singular values
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SVD

Theorem (without proof):

If rank(W) = 3, the optimal solution of
E(R,t) is unique and is given by:

R=Uv?{

The minimal value of error function is:

NP
E(R,t) = Y (||z}]|? + |[¥}l|*) — 2(o1 + 02 + 03)
1=1
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ICP with Unknown Data
Association

If the correct correspondences are not
known, it is generally impossible to
determine the optimal relative rotation
and translation in one step

- N\~
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Iterative Closest Point (ICP)
Algorithm

= [dea: Iterate to find alignment

» Jterative Closest Points
[Bes| & McKay 92]

= Converges if starting positions are
“close enough”

77N
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Basic ICP Algorithm

= Determine corresponding points
= Compute R and t via SVD

= Apply R and t to the points of the set
to be registered

= Compute the error E(R,t)

» If error decreased and > threshold
= Repeat these steps

= Stop and output final alignment,
otherwise
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Problems

= ICP is sensitive to the initial guess
= Local minima
= Ambiguities in the environment
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Feature-Based Matching

= Environment abstraction

Indoor (fr-079)

[Courtesy of G. Grisetti]

= Sensor abstraction

LS i/

Outdoor (Victoria park)

[Courtesy of M. Kaess]

[Courtesy of K. Mikolajczyk]
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Feature-Based Matching

» Detect salient locations in the data
» Describe them with local information

= Match the set of features considering
their appearance

» Features available
= Laser: FLIRT, SHOT, NARF,...
= Camera: SIFT, SURF, BRISK, FAST,...
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FLIRT Detector

= Points define a curve in R?
= Smoothing at different scales
S(a(s): ) = /F E(s.uDa(wdu  k(sut) = N(s — ust)

= Find points of maximum curvature
2] Au(s)]

F(s;t) = sG] -

= Sampling invariance

~ N k(s,u;t)
R ut) = e Dp(us B

Maw=]%wmwmmm%
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FLIRT Detector

Indoor (FR 079)

- Example

Outdoor (Victoria Park)
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FLIRT Descriptor

= We have range data  mean Variance

= Solution: - Grid
= Polar occupancy grid | /|
* Free space \
= Ray tracing
= Bayesian estimation using 3 distributions
= Mean and variance estimation
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Feature Matching (RANSAC)

Matching a
Iteratively

gorithm robust to outliers

verform:

1. Sample a minimal solution set

2. Compute the transformation

3. Compute the inlier set

4. If inlier set > than previous, update

The number of iterations depends on
the dimension of the minimal set
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RANSAC Iterations
= | et g be the probability of an inlier

() NN =k Y Np—i

q = = = .
™) " NN -k LN
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RANSAC Iterations
= | et g be the probability of an inlier

4= v\ v
-1:[] .'.1\ - E .'7\‘
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RANSAC Iterations
= | et g be the probability of an inlier

q = — ~ | 7
= 11N = N
=0

= The probability of outliers in the MSS
(1—q)"
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RANSAC Iterations
= | et g be the probability of an inlier

q = — ~ | 7
= 11N = N
=0

= The probability of outliers in the MSS
(1—q) <e
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RANSAC Iterations
= | et g be the probability of an inlier

q = —— ~ | =7

i=0
= The probability of outliers in the MSS
(1—q) <e

= The number of iterations is given by

log =
h >
|Vlu;__3h (1 — q)-‘
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Problems

= Local minima
= Ambiguities in the environment
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Problems

= Local minima
= Ambiguities in the environment

= Dealing with ambiguous areas in an
environment is essential for robustly
operating robots
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Ambiguities - Global Ambiguity

= B is inside the uncertainty ellipse of A
= Are A and B the same place?
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Ambiguities - Global Ambiguity

= B is inside the uncertainty ellipse of A
= A and B might not be the same place

Courtesy: E. Olson 58



Ambiguities - Global Ambiguity

= B is inside the uncertainty ellipse of A
= A and B are not the same place
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Ambiguities - Global Sufficiency

= B is inside the uncertainty ellipse of A
= The is no other possibility for a match

—
| Per

= A's
uncertainty
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Ambiguities - Local Ambiguity

= “Picket Fence Problem”: largely
overlapping local matches

Courtesy: E. Olson uncertainty
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Global Match Criteria

1. Global Sufficiency: There is no possible
disjoint match (“A is not somewhere else
entirely”)

2. Local unambiguity: There are no
overlapping matches (A is either here or
somewhere else entirely”)

Both need to be satisfied for a match
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Olson’s Proposal

e-to-Pose rigid-

body transformations

Sets of pose-to-pose

atches relating

nearby poses

lly consistent and

unambiguous matches

Pri
= >» Pose Matcher
Pos
Topological
Grouping
. SLAM |
. Backend : "
' ' SCGP
Globally consistent and Loca
unambiguous matches
(“Loop Closures”) Global
eeeee oo Ambiguity Te

Courtesy: E. Oison

Criterion
st 1

63



Topological Grouping

= Group together topologically-related pose-
to-pose matches to form local matches

= Each group asks a “topological” question:
Do two local maps match?

Local Match Group 1

Courtesy: E. Olson Local..'Mé"EEH"'éFoup 2
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Locally Unambiguous Matches

Goal:

------
----------------
“““““
.* .,
* 3

Unfiltered Local Match Locally consistent and

(set of pose-to-pose matches) unambiguous local match
(set of pose-to-pose matches)
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Locally Consistent Matches

= Correct pose-to-pose hypotheses
must agree with each other

= Incorrect pose-to-pose hypotheses
tend to disagree with each other

* Find subset of self-consistent of
hypotheses

= Multiple self-consistent subsets, are
an indicator for a “picket fence”!
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Do Two Hypotheses Agree?

= Consider two hypotheses 1 and j in the set:

............................. hi hJ
A e

graph

Rigid-body transformation around the
loop should be the identity matrix
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Idea of Olson’s Method

= Form pair-wise consistency matrix A
- B _p

WV a4

Hypothesis Set

| i___/VAij = P(loop(i,j) = I | hi, hy)
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Single Cluster Graph
Partitioning

= [dea: Identify the subset of consistent
hypotheses

* Find the best indicator vector
(represents a subset of the
hypotheses)

~i
—

1 if h; is correct,
0 if h; is incorrect

Indicator vector v = > Vi

Courtesy: E. Olson 69



Single Cluster Graph
Partitioning

= [dentify the subset of hypotheses that
is maximally self-consistent

= Which subset v has the greatest
average pair-wise consistency A?

Sum of all pair-wise consistencies
)\ L VT Av between hypotheses in v

T
VoV Number of hypotheses in v

Gallo et al 1989

= Densest subgraph problem

Courtesy: E. Olson



Consistent Local Matches

= We want find v that maximizes A(v)
vIiAv
A(V) =

vTv

= Treat as continuous problem
= Derive and set to zero

OA(v) _
ov 0

= Which leads to (for symmetric A)

8/(\5,(‘:’) =0 < Av=)\v
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Consistent Local Matches

» Av = Av : Eigenvalue/vector problem

= The dominant eigenvector v,
maximizes

)\(V) _ vIiAv

vTv

= The hypothesis represented by v,
is maximally self-consistent subset

= If A{//A;5 is large (e.g., A{/A5>2) then v,
is regarded as locally unambiguous

= Discretize v, after maximization
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Global Consistency

= Correct method: Can two copies of A be

arranged so that they both fit inside the
covariance ellipse?

= Approximation: Is the dimension of A at
least half the length of the dominant axis of
the covariance ellipse?

= Potential failures for narrow local matches

Courtesy: E. Olson X ‘\ ‘ 73
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Olson’s Proposal

e-to-Pose rigid-

body transformations

Sets of pose-to-pose

atches relating

nearby poses

lly consistent and

unambiguous matches

Pri
= >» Pose Matcher
Pos
Topological
Grouping
. SLAM |
. Backend : "
' ' SCGP
Globally consistent and Loca
unambiguous matches
(“Loop Closures”) Global
eeeee oo Ambiguity Te
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Example
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Conclusions

= Matching local observations is used to
generate pose-to-pose hypotheses

= | ocal matches assembled from pose-
to-pose hypotheses

= Local ambiguity (“picket fence”) can
be resolved via SCGP’ s confidence
metric

= Positional uncertainty: more
uncertainty requires more evidence
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Literature

FLIRT Features

= Tipaldi, Arras: "FLIRT -- Interest
Regions for 2D Range Data”

Spectral Clustering

= Olson: “"Recognizing Places using
Spectrally Clustered Local Matches”
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Giorgio Grisetti, Bastian Steder, Rainer
Kimmerle, Patrick Pfaff, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
bonn.de’8



