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Abstract

We propose a method for inferring human attributes
(such as gender, hair style, clothes style, expression, ac-
tion) from images of people under large variation of view-
point, pose, appearance, articulation and occlusion. Con-
volutional Neural Nets (CNN) have been shown to perform
very well on large scale object recognition problems [15].
In the context of attribute classification, however, the sig-
nal is often subtle and it may cover only a small part of the
image, while the image is dominated by the effects of pose
and viewpoint. Discounting for pose variation would re-
quire training on very large labeled datasets which are not
presently available. Part-based models, such as poselets
[4] and DPM [12] have been shown to perform well for this
problem but they are limited by shallow low-level features.
We propose a new method which combines part-based mod-
els and deep learning by training pose-normalized CNNs.
We show substantial improvement vs. state-of-the-art meth-
ods on challenging attribute classification tasks in uncon-
strained settings. Experiments confirm that our method out-
performs both the best part-based methods on this problem
and conventional CNNs trained on the full bounding box of
the person.

1. Introduction
Recognizing human attributes, such as gender, age, hair

style, and clothing style, has many applications, such as
facial verification, visual search and tagging suggestions.
This is, however, a challenging task when dealing with
non-frontal facing images, low image quality, occlusion,
and pose variations. The signal associated with some at-
tributes is subtle and the image is dominated by the effects
of pose and viewpoint. For example, consider the problem
of detecting whether a person wears glasses. The signal
(glasses wireframe) is weak at the scale of the full person
and the appearance varies significantly with the head pose,
frame design and occlusion by the hair. Therefore, localiz-
ing object parts and establishing their correspondences with
model parts can be key to accurately predicting the under-

lying attributes.
Deep learning methods, and in particular convolutional

nets [20], have achieved very good performance on sev-
eral tasks, from generic object recognition [15] to pedes-
trian detection [25] and image denoising [6]. Moreover,
Donahue et al. [8] show that features extracted from the
deep convolutional network trained on large datasets are
generic and can help in other visual recognition problems.
However, as we report below, they may underperform com-
pared to conventional methods which exploit explicit pose
or part-based normalization. We conjecture that available
training data, even ImageNet-scale, is presently insufficient
for learning pose normalization in a CNN, and propose a
new class of deep architectures which explicitly incorporate
such representations. We combine a part-based representa-
tion with convolutional nets in order to obtain the benefit
of both approaches. By decomposing the input image into
parts that are pose-specific we make the subsequent train-
ing of convolutional nets drastically easier, and therefore,
we can learn very powerful pose-normalized features from
relatively small datasets.

Part-based methods have gained significant recent atten-
tion as a method to deal with pose variation and are the
state-of-the-art method for attribute prediction today. For
example, spatial pyramid matching [18] incorporates ge-
ometric correspondence and spatial correlation for object
recognition and scene classification. The DPM model [12]
uses a mixture of components with root filter and part fil-
ters capturing viewpoint and pose variations. Zhang et al.
proposed deformable part descriptors [27], using DPM part
boxes as the building block for pose-normalized representa-
tions for fine-grained categorization task. Poselets [5, 3] are
part detectors trained on positive examples clustered using
keypoint annotations; they capture a salient pattern at a spe-
cific viewpoint and pose. Several approaches [11, 26] have
used poselets as a part localization scheme for fine-grained
categorization tasks which are related to attribute predic-
tion. Although part-based methods have been successful on
several tasks, they have been limited by the choice of the
low-level features applied to the image patches.

In this paper, we propose the PANDA model, Pose
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Figure 1: Overview of Pose Aligned Networks for Deep Attribute modeling (PANDA). One convolutional neural net is
trained on semantic part patches for each poselet and then the top-level activations of all nets are concatenated to obtain a
pose-normalized deep representation. The final attributes are predicted by linear SVM classifier using the pose-normalized
representations.

Alignment Networks for Deep Attribute modeling, which
augments deep convolutional networks to have input lay-
ers based on semantically aligned part patches. Our model
learns features that are specific to a certain part under a cer-
tain pose. We then combine the features produced by many
such networks and construct a pose-normalized deep rep-
resentation using poselets. Our method can use other parts
and we show the performance using DPM [12] as well. We
demonstrate the effectiveness of PANDA on attribute classi-
fication problems and present state-of-the-art experimental
results on four datasets, an attribute dataset from the web,
the Berkeley Attributes of People Dataset [4], the Labeled
Faces in the Wild dataset [16], and a large-scale gender
recognition dataset.

2. Related work

2.1. Attribute classification

Attributes are used as an intermediate representation for
knowledge transfer in [17, 10] for object recognition tasks.
By representing the image as a list of human selected at-
tributes they recognize unseen objects with few or zero
training examples. Other related work on attributes includes
that by Parikh et al. [22] exploring the relative strength of at-
tributes by learning a rank function for each attribute, which
can be applied to zero-shot learning as well as to generate
richer textual descriptions. There is also some related work
in automatic attribute discovery: Berg et al. [1] proposed

automatic attribute vocabularies discovery by mining unla-
beled text and image data sampled from the web. Duan et
al. [9] proposed an interactive crowd-sourcing method to
discover both localized and discriminative attributes to dif-
ferentiate bird species.

In [16], facial attributes such as gender, mouth shape, fa-
cial expression, are learned for face verification and image
search tasks. Some of the attributes used by them are sim-
ilar to what we evaluate in this work. However, all of their
attributes are about human faces and most of images in their
dataset are frontal face subjects while our datasets are more
challenging in terms of image quality and pose variations.

A very closely related work on attribute prediction is
Bourdev et al. [4], which is a three-layer feed forward clas-
sification system and the first layer predicts each attribute
value for each poselet type. All the predicted scores of
first layer are combined as a second layer attribute classi-
fier and the correlations between attributes are leveraged
in the third layer. Our method is also built on poselets,
from which the part correspondence is obtained to gener-
ate a pose-normalized representation.

2.2. Deep learning

The most popular deep learning method for vision,
namely the convolutional neural network (CNN), has been
pioneered by LeCun and collaborators [20] who initially ap-
plied it to OCR [21] and later to generic object recognition
tasks [13]. As more labeled data and computational power



has become recently available, convolutional nets have be-
come the most accurate method for generic object category
classification [15] and pedestrian detection [25].

Although very successful when provided very large la-
beled datasets, convolutional nets usually generalize poorly
on smaller datasets because they require the estimation of
millions of parameters. This issue has been addressed
by using unsupervised learning methods leveraging large
amounts of unlabeled data [23, 13, 19]. In this work, we
take instead a different perspective: we make the learning
task easier by providing the network with pose-normalized
inputs.

While there has already been some work on using deep
learning methods for attribute prediction [7], we explore al-
ternative ways to predict attributes, we incorporate the use
of poselets in the deep learning framework and we per-
form a more extensive empirical validation which compares
against conventional baselines and deep CNNs evaluated on
the whole person region.

3. Pose Aligned Networks for Deep Attribute
modeling (PANDA)

We explore part-based models, specifically poselets, and
deep learning, to obtain pose-normalized representations
for attribute classification tasks. Our goal is to use pose-
lets for part localization and incorporate these normalized
parts into deep convolutional nets in order to extract pose-
normalized representations. Towards this goal, we lever-
age both the power of convolutional nets for learning dis-
criminative features from data and the ability of poselets to
simplify the learning task by decomposing the objects into
their canonical poses. We develop Pose Aligned Networks
for Deep Attribute modeling (PANDA), which incorporates
part-based and whole-person deep representations.

While convolutional nets have been successfully applied
to large scale object recognition tasks, they do not general-
ize well when trained on small datasets. Our setup requires
fewer training instances because we are able to augment the
training set size – we consider each poselet activation as a
separate training example.

Specifically, we start from poselet patches, resize them to
64x64 pixels (Figure 3), randomly jitter each patch and flip
it horizontally with probability 0.5 to improve generaliza-
tion, and train a CNN for each poselet. The overall convo-
lutional net architecture is shown in Figure 2. The network
consists of four convolutional, max pooling, local response
normalization layers followed by a fully connected layer
with 576 hidden units. After that, the network branches out
one fully connected layer with 128 hidden units for each at-
tribute and each of the branch outputs a binary classifier of
the attribute. The last two layers are split to let the network
develop customized features for each attribute (e.g., detect-
ing whether a person wears a “dress” or “sunglasses” pre-

poselet 1

poselet 16

poselet 79

Figure 3: Poselet Input Patches from Berkeley Attributes
of People Dataset. For each poselet, we use the detected
patches to train a convolution neural net. Here are some ex-
amples of input poselet patches and we are showing poselet
patches with high scores for poselet 1,16 and 79.

sumably requires different features) while the bottom layers
are shared to a) reduce the number of parameters and b) to
leverage common low-level structure.

The whole network is trained jointly by standard back-
propagation of the error [24] and stochastic gradient de-
scent [2] using as a loss function the sum of the log-losses
of each attribute for each training sample. The details of the
layers are given in Figure 2 and further implementation de-
tails can be found in [15]. To deal with noise and inaccurate
poselet detections, we train on patches with high poselet
detection scores and then we gradually add more low confi-
dence patches.

Different parts of the body may have different signals for
each of the attributes and sometimes signals coming from
one part cannot infer certain attributes accurately. For ex-
ample, deep net trained on person leg patches contains little
information about whether the person wears a hat. There-
fore, we first use deep convolutional nets to generate dis-
criminative image representations for each part separately
and then we combine these representations for the final
classification. Specifically, we extract the activations from
fc attr layer in Figure 2, which is 576 dimensional, for the
CNN at each poselet, and concatenate the activations of all
poselets together into 576*150 dimensional feature. If a
poselet does not activate for the image, we simply leave the
feature representation to zero.

The part-based deep representation mentioned above
leverages both the discriminative deep convonvolutional
features and part correpondence. However, poselet detected
parts may not always cover the whole image region and in
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Figure 2: Part-based Convolutional Neural Nets. For each poselet, one convolutional neural net is trained on patches
resized 64x64. The network consists of 4 stages of convolution/pooling/normalization and followed by a fully connected
layer. Then, it branches out one fully connected layer with 128 hidden units for each attribute. We concatenate the activation
from fc attr from each poselet network to obtain the pose-normalized representation. The details of filter size, number of
filters we used are depicted above.

some degenerate cases, images may have few poselets de-
tected. To deal with that, we also incorporate a deep net-
work covering the whole-person bounding box region as in-
put to our final pose-normalized representation.

Based on our experiments, we find a more complex net
is needed for the whole-person region than for the part re-
gions. We extract deep convolutional features from the
model trained on Imagenet [15] using the open source pack-
age provided by [8] as our deep representation of the full
image patch.

As shown in Figure 1, we concatenate the features from
the deep representations of the full image patch and the 150
parts and train a linear SVM for each attribute.

4. Datasets
4.1. The Berkeley Human Attributes Dataset

We tested our method on the Berkeley Human Attributes
Dataset [4]. This dataset consists of 4013 training, and 4022
test images collected from PASCAL and H3D datasets. The
dataset is challenging as it includes people with wide vari-
ation in pose, viewpoint and occlusion. About 60% of the
photos have both eyes visible, so many existing attributes
methods that work on frontal faces will not do well on this
dataset.

4.2. Attributes 25K Dataset

Unfortunately the training portion of the Berkeley
dataset is not large enough for training our deep-net models
(they severely overfit when trained just on these images).
We collected an additional dataset from Facebook of 24963
people split into 8737 training, 8737 validation and 7489
test examples. We made sure the images do not intersect
those in the Berkeley dataset. The statistics of the images
are similar, with large variation in viewpoint, pose and oc-
clusions.

We train on our large training set and report results on
both the corresponding test set and the Berkeley Attributes
test set. We chose to use a subset of the categories from the
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Figure 4: Statisitcs of the number of groundtruth labels on
Attribute 25k Dataset. For each attribute, green is the num-
ber of positive labels, red is the number of negative labels
and yellow is the number of uncertain labels.

Berkeley dataset and add a few additional categories. This
will allow us to explore the transfer-learning ability of our
system.

Not every attribute can be inferred from every image. For
example, if the head of the person is not visible, we cannot
enter a label for the ”wears hat” category. The statistics of
ground truth labels are shown on Figure 4.

5. Results

In this section, we will present a comparative perfor-
mance evaluation of the proposed method.

5.1. Results on the Berkeley Attributes of People
Dataset

On Table 1 we show the results on applying our sys-
tem on the publicly available Berkeley Attributes of People
dataset. We compare against Poselets, DPD and Joo et al.
on that dataset as reported by [4], [27] and [14] respectively.
For our method, PANDA, we use Attributes25K train+val
dataset to train the poselet-level CNNs of our system, and



Attribute male long hair glasses hat tshirt longsleeves shorts jeans long pants Mean AP
Poselets[4] 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.18
DPD[27] 83.7 70.0 38.1 73.4 49.8 78.1 64.1 78.1 93.5 69.88

Joo et al. [14] 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1 70.7
PANDA 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 78.98

Table 1: Attribute classification results on the Berkeley Attributes of People Dataset as compared to the methods of Bourdev et
al. [4] and Zhang et al. [27] .

Attribute male long hair hat glasses dress sunglasses short sleeves baby mean AP
Poselets150[4] 86.00 75.31 29.03 36.72 34.73 50.16 55.25 41.26 51.06

DPD[27] 85.84 72.40 27.55 23.94 48.55 34.36 54.75 41.38 48.60
DeCAF [8] 82.47 65.03 19.15 14.91 44.68 26.91 56.40 50.19 44.97
DL-DPM 88.27 77.64 43.44 36.70 55.72 55.03 67.95 64.89 61.20
PANDA 94.10 83.17 39.52 72.25 59.41 66.62 72.09 78.76 70.74

Table 2: Average Precision on the Attributes25K-test dataset.

we used validation set to train the SVM classifier.
As the table shows, our system outperforms all the prior

methods across most attributes. In the case of t-shirt, [14]
performs better, perhaps due to the fact that Attribute25K
dataset doesn’t have wearing tshirt attribute so that the part-
level CNNs are not trained on that attribute.

Note that the attributes shorts, jeans and long pants are
also not present in the Attributes25K dataset. We don’t have
enough labeled data of this dataset to train the convolutional
neural nets but the transfer learning is still effective.

We show some examples of highest and lowest scoring
PANDA results for some attributes in Figure 6. Figure 5
shows the top failure cases for wearing tshirts and having
short hair on the test dataset. In the case of wearing tshirt,
the top failure cases are picking the sleeveless, which look
very similar to tshirts. And for the case of short hair, some
failures are due to the person having a pony tail or the long
hair is occluded in the image.

5.2. Results on the Attributes25K Dataset

Table 2 shows results on the Attributes25K-test Dataset.
Poselets150 shows the performance of our implementa-

tion of the three-layer feed-forward network proposed by
[4]. Instead of the 1200 poselets in that paper we used the
150 publicly released poselets, and instead of multiple as-
pect ratios we use 64x64 patches. Our system underper-
forms [4] and on the Berkeley Attributes of People dataset
yields mean AP of 60.6 vs 65.2, but it is faster and simpler
and we have adopted the same setup for our CNN-based
poselets. This allows us to make more meaningful compar-
isons between the two methods.

DPD and DeCAF We used the publicly available imple-
mentations of [27] based on deformable part models and [8]
based on CNN trained on ImageNet.

DL-DPM shows the performance of using DPM parts

instead of poselets. We used the pretrained DPM model
in [27]. We extracted the patches associated with each of
the 8 parts in each of the 6 mixture components for a total
of 48 parts (only 8 of which are active at a time). We then
used the same setup as PANDA – trained CNN classifiers
for each of the 48 parts, combined them with the global
model and trained SVM on top. As the table shows, DL-
DPM outperforms conventional part-based methods (both
DPM and poselets) which do not use deep features as well
as DeCAF. However it does not match the performance of
the deep poselets in PANDA. The patches from DPM parts
have higher noise (because they have to fire even if the pat-
tern is weak or non-existent) and are not well aligned (be-
cause they have to satisfy global location constraints).

5.3. Component Evaluation

We now explore the performance of individual compo-
nents of our system as shown on Table 3 using the Berkeley
dataset. Our goal is to get insights into the importance of
using deep learning and the importance of using parts.

How well does a conventional deep learning classifier
perform? We first explore a simple model of feeding the
raw RGB image of the person into a deep network. To help
with rough alignment and get signal from two resolutions
we split the images into four 64x64 patches – one from the
top, center, and bottom part of the person’s bounds, and one
from the full bounding box at half the resolution. In to-
tal we have 4 concatenated 64x64 square color images as
input (12 channels). We train a CNN on this 12x64x64 in-
put on the full Attributes-25K dataset. The structure we
used is similar to the CNN in Figure 2 and it consists of
two convolution/normalization/pooling stages, followed by
a fully connected layer with 512 hidden units followed by
nine columns, each composed of one hidden layer with 128



Attribute male long hair glasses hat tshirt longsleeves short jeans long pants Mean AP
DL-Pure 80.65 63.23 30.74 57.21 37.99 71.76 35.05 60.18 86.17 58.11
DeCAF 79.64 62.29 31.29 55.17 41.84 78.77 80.66 81.46 96.32 67.49

Poselets150 L2 81.70 67.07 44.24 54.01 42.16 71.70 36.71 42.56 87.41 58.62
DLPoselets 92.10 82.26 76.25 65.55 44.83 77.31 43.71 52.52 87.82 69.15

PANDA 91.66 82.70 69.95 74.22 49.84 86.01 79.08 80.99 96.37 78.98

Table 3: Relative performance of baselines and components of our system on the Berkeley Attributes of People test set.

Partition male long hair glasses hat tshirt longsleeves shorts jeans long pants Mean AP
Frontal 92.55 88.40 77.09 74.40 51.69 86.84 78.00 79.63 95.70 80.47
Profile 91.42 59.38 37.06 69.47 49.02 84.61 85.57 82.71 98.10 73.04

Back-facing 88.65 63.77 72.61 72.19 55.20 84.32 74.01 86.12 96.68 77.06
All 91.66 82.70 69.95 74.22 49.84 86.01 79.08 80.99 96.37 78.98

Table 4: Performance of PANDA on front-facing, profile-facing and back-facing examples of the Berkeley Attributes of
People test set.

hidden units. Each of the 9 branches outputs a single value
which is a binary classifier of the attribute. We then use the
CNN as a feature extractor on the validation set by using
the features produced by the final fully connected layer. We
train a logistic regression using these features and report its
performance on the ICCV test set as DL-Pure on Table 3.

We also show the results of our second baseline – De-
CAF, which is the global component of our system. Even
though it is a convolutional neural net originally trained on
a completely different problem (ImageNet classification),
it has been exposed to millions of images and it outper-
forms DL-Pure.

How important is deep learning at the part level?. By
comparing the results of Poselets150L2 and DLPoselets we
can see the effect of deep learning at the part level. Both
methods use the same poselets, train poselet-level attribute
classifiers and combine them at the person level with a lin-
ear SVM. The only difference is that Poselets150L2 uses
the features as described in [4] (HOG features, color his-
togram, skin tone and part masks) whereas DLPoselets uses
features trained with a convolutional neural net applied to
the poselet image patch. As our table shows, deep-net pose-
lets result in increased performance.

PANDA shows the results of our proposed system which
combines DeCAF and DLPoselets. Our part and holistic
classifiers use complementary features and combining them
together further boosts the performance.

5.4. Robustness to viewpoint variations

In Table 4, we show the performance of our method as a
function of the viewpoint of the person. We considered as
frontal any image in which both eyes of the person are visi-
ble, which includes approximately 60% of the dataset. Pro-
file views are views in which one eye is visible and Back-

(a) Failure case: Top incorrect predictions as wearing tshirts.

(b) Failure case: Top incorrect predictions for short hair.

Figure 5: Example of failure cases on the Berkeley At-
tributes of People test dataset.

facing are views where both eyes are not visible. As ex-
pected, our method performs best for front-facing people
because they are most frequent in our training set. How-
ever, the figure shows that PANDA can work well across a
wide range of viewpoints.

5.5. Results on the LFW Dataset

We also report results on the Labeled Faces in the Wild
dataset [16]. The dataset consists of 13233 images of
cropped, centered frontal faces. The registered nature of
the data does not leverage the strengths of our system in
its ability to deal with viewpoint, pose and partial occlu-
sions. Nevertheless, it provides us another datapoint to
compare against other methods. This dataset contains many
attributes, but unfortunately the ground truth labels are not
released. We used crowd-sourcing to collect ground-truth



(a) Highest scoring results for people wearing glasses.

(b) Highest scoring results for people wearing a hat.

(c) Highest scoring results for people wearing short pants.

(d) Lowest scoring results for men.

Figure 6: Examples of highest and lowest scoring PANDA
results on Berkeley Attributes of People Dataset. The im-
ages are cropped so the required attribute can be seen better.

Method Gender AP
Simile [16] 95.52

FrontalFace poselet 96.43
PANDA 99.54

Table 5: Average precision of PANDA on the gender recog-
nition of the LFW dataset.

labels for the gender attribute only. We split the examples
randomly into 3042 training and 10101 test examples with
the only constraint that the same identity may not appear
in both training and test sets. We used our system whose
features were trained on Attribute-25K to extract features
on the 3042 training examples. Then we trained a linear
SVM and applied the classifier on the 10101 test examples.
We also used the publicly available gender scores of [16]
to compute the average precision of their system on the test
subset. The results are shown on Table 5.
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Figure 7: Average precision of gender classification as a
function of the training size.

PANDA’s AP on LFW is 99.54% using our parts model,
a marked improvement over the previous state of the art.
Our manual examination of the results shows that roughly
1 in 200 test examples either had the wrong ground truth
or we failed to match the detection results with the correct
person. Thus PANDA achieves nearly perfect gender recog-
nition performance in LFW and it shows that PANDA is ef-
fective even when images are tightly cropped and variation
in pose is reduced.

One interesting observation is that, even though the
dataset consists of only frontal-face people, the perfor-
mance of our frontal-face poselet is significantly lower than
the performance of the full system. This suggests that our
system benefits from combining the signal from multiple
redundant classifiers, each of which is trained on slightly
different set of images.

5.6. Analysis of dataset size

We also investigate the effects of number of training ex-
amples for DL Pure and DL Poselet methods. It is inter-
esting to see if holistic deep learning method trained on the
whole bounding box image can deal with pose variations
implicitly given a large amount of data. We collected a
dataset for gender classification, consisting of ∼90K train-
ing, ∼2.6K validation and ∼10K test examples of people
from photo albums. The ground truth labels have about
1.5% noise. We trained on the full training set of 90K, and
on subsets of 45K and 23.5K. The number of training ex-
amples for PANDA (poselet activations) are 5.6 million, 2.8
million and 1.4 million respectively. We followed the same
pipeline by using the same set of poselets and same part
level convolutional neural nets in the experiments above.
The results are shown in Figure 7. The holistic model (DL
Pure) has an almost linear improvement over the number
of training examples while our pose aligned method outper-
forms the holistic method but having a smaller improvement
as the training size increases. We would like to experiment



on a larger dataset to see if those two methods can intersect
in the future.

6. Conclusion
We presented a method for attribute classification of peo-

ple that improves performance compared with previously
published methods. It is conceptually simple and leverages
the strength of convolutional neural nets without requiring
datasets of millions of images. It uses poselets to factor out
the pose and viewpoint variation which allows the convolu-
tional network to focus on the pose-normalized appearance
differences. We concatenate the deep features at each pose-
let and add a deep representation of the whole input im-
age. Our feature representation is generic and we achieve
state-of-the-art results on the Berkeley Attributes of People
dataset and on LFW even if we train our CNNs on a dif-
ferent dataset. We believe that our proposed hybrid method
using mid-level parts and deep learning classifiers at each
part will prove effective not just for attribute classification,
but also for problems such as detection, pose estimation,
action recognition.
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