
  

 

Abstract— This paper presents Sequence Matching Across 

Route Traversals (SMART); a generally applicable sequence-

based place recognition algorithm. SMART provides 

invariance to changes in illumination and vehicle speed while 

also providing moderate pose invariance and robustness to 

environmental aliasing. We evaluate SMART on vehicles 

travelling at highly variable speeds in two challenging 

environments; firstly, on an all-terrain vehicle in an off-road, 

forest track and secondly, using a passenger car traversing an 

urban environment across day and night. We provide 

comparative results to the current state-of-the-art SeqSLAM 

algorithm and investigate the effects of altering SMART’s 

image matching parameters. Additionally, we conduct an 

extensive study of the relationship between image sequence 

length and SMART’s matching performance. Our results show 

viable place recognition performance in both environments 

with short 10-metre sequences, and up to 96% recall at 100% 

precision across extreme day-night cycles when longer image 

sequences are used.  

I. INTRODUCTION 

Visual place recognition systems have been increasingly 
popular within robotics, due in part to the wide availability of 
visual sensors, as well as their lack of reliance on global cues 
(c.f. GPS). These properties make them applicable in areas 
where satellite coverage is not available or the scale of the 
environment is small. Many of such systems reside under the 
banner of Simultaneous Localisation And Mapping (SLAM) 
– an area that is the subject of substantial research [1-5]. 

The increasing deployment of visual sensors as the 
primary sensor modality in state-of-the-art place recognition 
systems is motivated by their inherently high information 
potential, small size, modest power requirements, wide 
availability and low cost [6-8]. There has also been 
substantial focus on long-term autonomy for service robots 
with persistent navigation being a desirable outcome. 
However, persistent visual navigation remains a challenge, 
due to vision being inherently sensitive to changes in 
illumination, such as between different times of the day (such 
as the extreme case of day to night), and across weather and 
seasonal variations. Attempts to solve this problem have 
shown impressive results [9-12], but these existing systems 
either require prior training in similar environments [10, 11], 
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require impractically long image sequences [9, 12], or make 
assumptions about the repeatability of vehicle pose and 
velocity between traversals [9, 12]. Overcoming these 
limitations is essential for a persistent system with 
applicability to the real world. 

Sequence Matching Across Route Traversals (SMART) is 
a route-based place recognition algorithm, which improves 
the general applicability of Sequence SLAM (SeqSLAM) by 
integrating self-motion information to form spatially 
consistent sequences (Fig. 1), and new image matching 
techniques to handle greater perceptual change and variations 
in translational pose. Together, these developments allow the 
sequence-based algorithm to successfully recognise places 
across difficult environmental conditions, and for the first 
time, enable image sequences to be reduced to lengths 
practical for real-world use. SMART achieves these aims 
without professional-grade sensors, calibrated imagery or a 
training phase. In this paper, we build on a preliminary study 
in [13]; we extend the pose invariance capabilities of 
SMART and compare its performance against SeqSLAM on 
a new, varied-pose and visually bland off-road forest dataset, 
and conduct an extensive study of the relationship between 
sequence matching length and performance. 

The paper proceeds as follows: Section II provides 
background into prior work on visual place recognition and 
odometry. Section III summarises the SMART algorithm, 
reviewing its improvements over SeqSLAM. The 
experimental setup and results are presented in Section IV 
and Section V, respectively. Finally, Section VI discusses the 
outcomes of this paper and presents suggestions for future 
work. 

 

Fig. 1: Using condition-invariant, whole-image matching techniques 

and odometry, SMART compares image sequences with constant 
spatial separation between images. 

II. BACKGROUND 

With vision as the primary sensor, SLAM systems have 
previously shown impressive place recognition, as judged by 
accuracy and environmental size. One state-of-the-art 
example is FAB-MAP, which has been successfully 
demonstrated on long routes up to 1000 km [14], but requires 
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a training phase before deployment. The use of features in 
such systems, such as SIFT [15] and SURF [16] allows 
invariance to scale and rotation, but leads to poor 
performance across extreme perceptual change [9].  

Sensor fusion is a common technique to improve the 
perceptual invariance of vision systems, with notable 
examples using thermal camera [17] and laser augmentations 
[18, 19]. The disadvantage of these approaches is that 
systems become more expensive and cumbersome, which has 
motivated further investigation into more invariant vision-
only place recognition. 

SeqSLAM is a place recognition algorithm that uses 
sequences of whole images and local-best matching 
techniques to cope with extreme perceptual change [9], even 
over very long (3000 km) journeys [12]. Its lack of reliance 
on features enables SeqSLAM to work with high levels of 
motion blur [20], allowing slower shutter speeds for greater 
exposure in low light. The linear sequence search process in 
SeqSLAM assumes similar speeds in repeated route 
traversals and negligible accelerations, limiting its 
performance when these criteria are not met. These 
shortcomings have been somewhat addressed by Cooc-MAP, 
which uses feature codebooks for various times of the day 
and allows non-linear sequence searching [10]. However, the 
disadvantage of this approach is that multiple training 
traversals are required, including those in similar conditions 
and similar time of day to the query traversal. Non-linear 
sequence searching also reduces search constraints, 
potentially allowing more spurious sequence matches and 
increasing computational complexity. 

Combining visual place recognition and odometry is a 
demonstrably effective technique for motion estimation and 
pose filtering [4, 21]. Odometry effectively allows constraints 
in searching for loop-closures, improving accuracy and 
reducing computational complexity. An alternative system, 
OpenStreetSLAM, is an odometry-only approach to place 
recognition, which fits trajectory shapes of its path to streets 
on roadmaps [22]. However, locations exhibiting self-
similarity, such as highways and gridded streets pose a 
serious challenge to this approach. 

III. THE SMART ALGORITHM 

This section summarises the SMART algorithm and 
describes the addition of several new components over its 
progenitor, SeqSLAM. 

A. Sky Blackening 

The sky regions of an image offer no localisation 
information and degrade matching performance if conditions 
change between traversals. In such cases, we effectively 
remove the sky in daytime traversals by a process we call Sky 
Blackening. The process begins by applying a transform [23] 
to the original RGB image to enhance the contrast of the 
brighter, bluer sky regions, giving C: 

 

3.8243.1363.016.1  BGRC  (1) 

This image is then converted into an image mask by 
thresholding at the sky-ground boundary using valley-
emphasis [24] – a technique which does not assume a bi-
modal distribution of sky-ground pixel occurrences. The 

mask is then used to effectively zero all pixels of the sky 
regions in a standard greyscale version of the original image, 
which is then used for image comparison (Fig. 2). Despite the 
significantly different types of datasets used in this paper, the 
method leads to consistent performance improvements. 

 

Fig. 2: The sky blackening algorithm takes a daytime frame (a), 

automatically enhances the contrast between sky and ground (b), 
forms an image mask (c) and zeroes sky pixels of the image in its 

greyscale form (d). For comparison, the corresponding night time 

frame (e) and its greyscale form (f) are shown. The similarity of (d) 
and (f) is vastly greater than the original frames (a) and (e). 

B. Image Comparison 

To cope with changes in camera pose, SMART 
implements variable offset image matching – a technique 
absent from SeqSLAM, but used in other SLAM systems 
[25]. Each query frame is compared to each database frame 
(template) over a range of offsets up to a horizontal and 
vertical maximum (notated here as xmax and ymax) such that the 
Sum of Absolute Differences (SAD) score of the overlapping 
region is minimised. 

As with SeqSLAM, comparisons are made with the 
resolution reduced, patch-normalised frames – a process 
performed by dividing the image into patches, then taking 
each pixel and subtracting its patch mean and dividing by its 
patch standard deviation [9]. All difference scores are 
assembled into a difference vector, D for each frame. 

C. Distance-Based Template Learning and Querying 

SMART learns and queries resolution-reduced, patch-
normalised images at constant distance intervals, rather than 
constant time intervals. To function effectively, a consistent, 
but not necessarily metric source of translational velocity 
(e.g. encoder-based or visual) is required. 

D. Localised Sequence Searching 

Like SeqSLAM, SMART employs local neighbourhood 
normalisation to remove biases from lighting variations 
between route traversals. Each element in the difference 
vector D is normalised within a fixed range (l) by subtracting 
the local mean and dividing by the local standard deviation to 
enhance the local matching contrast [9]. 

To search for image sequences, difference vectors are 
joined to form an image-matching matrix, M: 

 

 TdTdT ss DDDM ˆ,,ˆ,ˆ 1 
  (2) 

where ds is the sequence length and T is the current frame 
number. Straight-line trajectories are then projected from 
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each element in sdT
D̂ to find the lowest-cost sequence, 

which has a normalised difference score, S: 
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where k is the index of the column vector D
t
 that the search 

trajectory passes through: 

 

tan)( tTdsk s   (4) 

where s is the number of the originating template and ϕ
 
is the 

search trajectory angle. As a final step, a global cost 
threshold is applied to determine which sequences are 
accepted or rejected. 

Using straight lines for sequence searching assumes that 
both route traversals were performed at similar speeds 
(depending on the search angle range) with negligible relative 
acceleration. These assumptions are not valid in many 
environments, such as busy city streets. SMART’s use of 
odometry for learning and querying effectively linearises 
sequences in M and constrains the search space to 
approximately 45° straight lines (Fig. 3). The result is a faster 
(fewer angles to search) and more accurate search process as 
spurious sequences are less likely to be selected. 

 

Fig. 3: The search algorithm finds the lowest-cost (dark blue) straight-

line segment across recent image difference vectors as the search 

angle, ϕ, is varied. For clarity, only one sequence starting point is 
shown in each case. SMART’s use of odometry (left) linearises the 

sequence trajectory, allowing a faster, more constrained search, with 

less chance of spurious matching. Without odometry (right), the linear 

trajectory lines do not correctly span over all sequence frames. 

IV. EXPERIMENTAL SETUP 

In this section, we describe the experimental setups, 
vehicular datasets, ground truth measures and the studies 
performed. 

A. Equipment 

A GoPro Hero3 Black Edition camera was used to record 
all video footage, chosen for its short focal length of 2.77 mm 
(15 mm full-frame equivalent). For the off-road dataset, a 
4WD Summit Traxxas 1:10 scale Radio-Controlled (RC) car 
was used to traverse the environment. The car was equipped 
with a Hall Effect sensor to log odometry to an onboard 
laptop computer. 

For the road dataset, the camera was mounted to the 
dashboard of an unmodified car, facing through its front 

windscreen. Odometry information was collected via the 
car’s OBDII port (standard on all modern cars) using an 
OBDPro USB Scantool and a laptop computer. Fig. 4 shows 
the experimental setup for both datasets. 

 

Fig. 4: Experimental setup, showing the RC car with GoPro camera 

and on-board laptop computer (top) and the road vehicle with GoPro 
camera (bottom-left), OBDPro and laptop computer (bottom-right). 

B. Datasets 

We tested SMART on two datasets
1
, as shown in Fig. 5.  

  

Fig. 5: Maps of the Alderley off-road dataset (top) and Surfers 

Paradise road dataset (bottom). The paths taken are shown in red. Note 
the U-turn in the north-most part of the road dataset, which was 

necessary for street access due to construction and road closures. 

Imagery © 2014 DigitalGlobe, Sinclair Knight Merz & Fugro, Map 
data © 2014 Google. 

 
1 Video datasets are available from tiny.cc/milforddatasets 
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The first dataset was collected with the RC car in an off-
road, forest environment in Brisbane, Australia, and spanned 
approximately 850 metres. This dataset was structured to 
deliberately test both the pose variance and velocity 
invariance capabilities of the new algorithm. The first 
traversal followed the left side of a dirt path with deliberate, 
regular and large speed variations  (Fig. 6). The second 
traversal followed the right side of the same path at a 
relatively constant speed. The two traversals took 
approximately 20 and 10 minutes respectively. The ratio 
between vehicle speeds at corresponding locations during the 
first and second traverses varied from infinite (stopped vs. 
moving) to approximately 50%, while lateral pose variance 
ranged from 1 to 3 metres (average of 2 metres). 

The second dataset consisted of a 3.5 km drive on-road 
through the busy streets of Surfers Paradise on the Gold 
Coast in Australia [13]. The first traversal of this dataset was 
performed during the day in overcast weather with light rain, 
and the second was performed in clear weather at night. As 
both traversals were done in peak traffic, the speed variation 
within and between traversals was significantly greater than 
the original SeqSLAM dataset [9]. Travel times across this 
dataset were approximately 20 and 15 minutes for the 
daytime and night time traversals, respectively. 

C. Ground Truth 

For both datasets, ground truth was constructed by 
manually finding pairs of frame correspondences at regular 
frame intervals. Approximately 200 pairs were found for 
each dataset, with linear interpolation used for in-between 
frames. Ground truth can be considered correct to within 
approximately 1 metre of forward translation for the road 
dataset and 3 metres for the off-road dataset (due to difficulty 
in identifying similar scenes across the changed pose and 
camera perspective). 

D. Data Pre-Processing 

All original videos were recorded at a resolution of 1920 
by 1440 pixels at frequencies of 30 and 24 frames per second 
for day and night, respectively. The road night time video 
was recorded at a lower frame rate to enable a longer 
exposure time (approximately 1/48th of a second) and later 
converted to 30 frames per second. For the road dataset, a 
rectangular crop was then performed to remove visible 
internal areas of the car. For image matching, the lower half 
of each frame was cropped out of the off-road videos to 
prevent spurious localisation from the highly-aliased dirt 
track.  

In cases where it was used, sky blackening was 
performed prior to downsampling and patch-normalisation, 
which was the final step before SAD image comparison. 

Odometry information was used to generate lists of frame 
numbers with fixed-distance separations as inputs into 
SMART. Separations of 0.25 metres and 1 metre (fdist) were 
used between frames for the off-road and road datasets, 
respectively. In the tests without odometry, similar lists were 
generated with fixed frame separations (fjump) to give 
approximately the same number of frame comparisons as in 
the odometry cases. 

E. Studies and Parameters 

For the off-road dataset, we conducted studies 
investigating how odometry, sky blackening and variable 
offset image matching (in increasing amounts) affect 
performance. The following scenarios were tested: 

1. Classic SeqSLAM 

2. Sky blackening and offset matching up to 2 pixels 

horizontally and 1 pixel vertically (no odometry) 

3. Odometry only 

4. Odometry and sky blackening 

5. Odometry, sky blackening and offset matching up to 

1 pixel horizontally and vertically 

6. Odometry, sky blackening and offset matching up to 

2 pixels horizontally and 1 pixel vertically 

7. Odometry, sky blackening and offset matching up to 

2 pixels horizontally and vertically 

8. Odometry, sky blackening and offset matching up to 

3 pixels horizontally and 1 pixel vertically 

An additional set of studies investigated the effect of 

changing the sequence length from 5 to 200 metres on the 

road dataset. Table I shows the parameter settings for all 

studies. 

TABLE I 

PARAMETER LIST 

Parameter Value Description 

Rx,Ry 64,32 
Reduced image size (road 
dataset) 

Rx,Ry 24,8 
Reduced image size (off-

road dataset) 

fdist 1 metre 
Frame learning rate (road 

dataset) 

fjump 10 frames 
Frame learning rate (off-road 
dataset, scenarios 1-2) 

fdist 0.25 metres 
Frame learning rate (off-road 

dataset, scenarios 3-8) 
l 80 templates Neighbourhood  length 

ds Varied 
Sequence length (road 

dataset) 

ds 
40 frames 

(10 metres) 

Sequence length (off-road 

dataset) 

P 8x8 pixels Patch size 

xmax, ymax 1,1 

Maximum shift offsets (off-

road scenario 5, road 

dataset) 

xmax, ymax 2,1 
Maximum shift offsets (off-

road scenarios 2 and 6) 

xmax, ymax 2,2 
Maximum shift offsets (off-
road scenario 7) 

xmax, ymax 3,1 
Maximum shift offsets (off-
road scenario 8) 

ϕ
 

[40°, 45°, 50°] Trajectory search angles 

 

V. RESULTS 

In this section, we present the results showing speed 
variation and place recognition performance in the off-road 
dataset, and the results of the sequence length study on the 
road dataset. A video accompaniment to this paper 
demonstrates the matching techniques and results. 
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A. Speed Variation 

There was significant speed variation between the two 
traversals of the off-road dataset (Fig. 6), with the first (left) 
traversal having a significant amount of arbitrary 
acceleration, stops and starts. 

 

Fig. 6: Speed plots of each traversal of the RC car dataset. The 

significant speed variation between each traversal makes sequence 

matching difficult without odometry. 

B. Place Recognition Performance 

Fig. 7 shows example frame matches on the off-road 
dataset. Despite the large variations in vehicle velocity, 
SMART attained good matching performance, especially 
when compared with SeqSLAM, as well as coping with 
moderate changes in shadowing, sky appearance and pose.  

 

Fig. 7: Example frame matches from the off-road dataset. The left 

column shows frames queried from the second traversal, and the 

middle and right columns show the frames recalled by SMART and 
SeqSLAM, respectively. Both algorithms performed well in distinct 

locations (top row), but SeqSLAM struggled to correctly match bland 

scenes (bottom 3 rows). Each frame is the midpoint of a sequence. 

Precision-recall curves (Fig. 8) were generated by varying 

the sequence cost threshold and comparing the chosen 

sequences to ground truth. Sequences were deemed correct if 

their midpoints were within 10 metres of ground truth – a 

stricter threshold than that used in previous studies (40 

metres in [9, 14, 20]). Here, precision is the proportion of 

returned frame pairs that were correct, and recall is the 

proportion of total correct frame pairs that were returned. 

Recall performance at 100% precision is the criterion of 

interest (despite missing some correct matches), as false 

positives are undesirable in a place recognition system. As 

the first and last ds/2 frames do not form part of complete 

sequences, it is not possible to achieve 100% recall. As 

shown in Table II, scenario 6 had the best performance, 

achieving 36% recall at 100% precision. 
 

 

Fig. 8: Precision-Recall curves for the 8 testing scenarios in the off-
road dataset, showing the performance improvement as the new 

features of SMART are added to the SeqSLAM baseline.  

TABLE II 
OFF-ROAD SCENARIO TESTING RESULTS 

Scenario 
Best Recall at 

100% Precision 

1 1% 

2 25% 

3 1% 
4 5% 

5 30% 

6 36% 
7 21% 

8 28% 

 

Odometry alone did not improve performance at the 
100% precision level (scenario 1 vs. 3), but did make a 
significant improvement when used in conjunction with 
optimal settings (scenario 2 vs. 6). Even though both 
traversals were performed at similar times of the day, sky 
blackening made a noticeable performance improvement 
(albeit not to the same enormous recall benefit of 50% as on 
the road dataset between day and night [13]), as it prevented 
cloud pattern variations from diluting matching performance. 
Image offsetting up to 2 pixels horizontally and 1 pixel 
vertically was found to be optimal, with further increases in 
either direction worsening performance. We attribute this to 
larger shifts resulting in a smaller image overlap (comparison 
region), making it more prone to aliasing and returning 
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spurious matching scores. Ground truth performance plots for 
the best cases with and without odometry are shown in Fig. 9. 

 

Fig. 9: Ground truth performance plots for the off-road dataset for 
optimised no-odometry scenario 2 (left – note the scale) and optimised 

odometry scenario 6 (right) at 100% precision. The horizontal axis 

represents frame numbers on the query traversal and the vertical axis 

represents those on the database traversal. Blue lines connect ground 

truth frame pairs and red crosses indicate the correctly reported frame 

matches. 

C. Sequence Length Study 

Table III shows the performance achieved by SMART as 
the sequence length is varied between 5 and 200 metres, as 
well as the theoretical maximum (to the nearest integer 
percentage) for each case. All tests were performed with sky 
blackening and optimal parameters (see Table I). Note that 
increasing the sequence length also reduces the maximum 
possible recall, as the first and last ds/2 frames are not 
midpoints (recalled frame pairs) of complete sequences. 
Thus, over the 2350 query frames, the maximum possible 
recall drops to 96% for 100-metre sequences, and 91% for 
200-metre sequences. This recall limitation applies for each 
new section of contiguous matching frames, with this dataset 
being a special case as the query traversal is a direct repeat of 
the database traversal. 

TABLE III 
SEQUENCE LENGTH PERFORMANCE 

Sequence 

Length 

(1 frame/metre) 

Best Recall 

Achieved at 100% 

Precision 

Maximum Possible 

Recall at 100% 

Precision 

5 12% 100% 

10 37% 100% 
20 47% 99% 

30 81% 99% 

40 86% 98% 

50 88% 98% 

75 91% 97% 
100 96% 96% 

200 68% 91% 

Significant performance improvement was achieved by 
increasing sequence lengths up to 30 metres, after which the 
improvements became more modest. Performance peaked at 
a sequence length of 100 metres, where SMART correctly 
identified all possible matches within complete sequences. 
The drop in performance at a sequence length of 200 metres 
was due to accumulated odometry error – fitting straight lines 
across slightly non-linear sequences resulted in several 
incorrect matches. 

All sequence lengths had strong enough recall 
performance to be viable in a navigation system, although the 
actual required recall at 100% precision rate would depend 
on the specific application. Using 10-metre sequences (37% 
recall), the median and mean match-to-match distances were 

1 metre and 2.6 metres, respectively, with a maximum gap of 
91 metres. Reducing the sequence length to 10 m thus allows 
faster searching and less initialisation lag (5 metres). Fig. 10 
shows ground truth performance plots of the 10, 30, 100 and 
200 metre sequence lengths, and Fig. 11 compares a 10-metre 
and 100-metre sequence from the same location. 

 

Fig. 10: Ground truth performance plots at 100% precision for the road 

dataset with optimal parameters and sequence lengths of 10, 30, 100 
and 200 metres from top-left to bottom-right, respectively. Blue lines 

connect ground truth frame pairs and red crosses indicate the correctly 

reported frame matches. 

 

Fig. 11: Example frames equally-spaced along a 10-metre (left) and 
100-metre (right) matched sequence. Both sequences report the same 

location match (outlined in red), but the 10-metre sequence spans a 

significantly smaller portion of the dataset and requires an order of 
magnitude fewer image comparisons.   

VI. DISCUSSION AND FUTURE WORK 

Our results showed that the new image matching 
techniques and use of odometry in SMART enabled 
successful place recognition in challenging environments 
where SeqSLAM struggled. The sky blackening technique 
proved beneficial for both day-night and day-day cycles, 
even when appearance change was relatively minor. 
Combining a wide field of view camera with image offsetting 
was effective at overcoming moderate and varied changes in 
lateral pose. 

Odometry provided velocity invariance and reduced the 
potential for matching aliased sequences by tightly 
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constraining the search for image sequences, unlike 
alternative methods that search a wide range of possible 
velocities and accelerations [10]. Obviously, a source of 
odometry information is required, but many platforms have 
either wheel-based or visual odometry-based odometry 
sources available.  

The final study showed the implications of varying the 
sequence length on the road dataset, and demonstrated that 
sequences as short as 10 metres could provide viable 
localisation. Shorter sequences enable faster searching and 
less localisation lag, which is equal to half a sequence length. 
This criterion becomes particularly important in instances 
where the second traversal is not a direct overlap of the first, 
such as in a navigation system where frames are unlikely to 
be queried in the same order as database frames. 

In both datasets, SMART achieved regular localisation, 
but had difficulty over a number of regions. The system had 
lower performance in areas with significant self-similarity, 
such as long stretches of road or track with common distal 
features. In a navigation system, this could be mitigated with 
dead reckoning using odometry, or by automatically 
increasing the sequence length – a technique we are currently 
investigating. 

One of the most promising applications for SMART is as 
a real-time navigation system that potentially augments GPS. 
Storage and computational concerns in such an application 
have been previously discussed [26], with databases of low-
resolution imagery shown feasible in environments up to the 
size of a small city. By constraining the search space (after an 
initial global localisation phase) to search database frames 
within only the local area (such as a city), real-time 
computation is feasible on standard embedded hardware. The 
contributions described in this paper represent a significant 
step towards achieving generic applicability across all 
environments and platforms.  
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