
Online Self-Supervised Multi-Instance Segmentation of Dynamic Objects

Alex Bewley1, Vitor Guizilini2, Fabio Ramos2 and Ben Upcroft1

Abstract— This paper presents a method for the continuous
segmentation of dynamic objects using only a vehicle mounted
monocular camera without any prior knowledge of the object’s
appearance. Prior work in online static/dynamic segmentation
[1] is extended to identify multiple instances of dynamic objects
by introducing an unsupervised motion clustering step. These
clusters are then used to update a multi-class classifier within
a self-supervised framework.

In contrast to many tracking-by-detection based methods,
our system is able to detect dynamic objects without any
prior knowledge of their visual appearance shape or location.
Furthermore, the classifier is used to propagate labels of the
same object in previous frames, which facilitates the continuous
tracking of individual objects based on motion.

The proposed system is evaluated using recall and false alarm
metrics in addition to a new multi-instance labelled dataset to
measure the performance of segmenting multiple instances of
objects.

I. INTRODUCTION

This paper addresses the problem of detecting and seg-

menting multiple dynamic objects simultaneously from a

monocular video sequence, where the camera itself is moving

within the scene. Motion segmentation remains as one of

the fundamental computational challenges and is a critical

perceptive capability for several robotic tasks, such as colli-

sion avoidance and path planning in dynamic environments.

The approach taken in this paper uses a combination of

unsupervised motion based clustering methods to supervise a

multi-class classifier with training examples collected online.

Much research effort is being expended on object recogni-

tion based methods which use various supervised classifiers

to train a predictive model off-line with a (preferably) large

manually labelled training dataset [2], [3], focusing on the

detection of a single class of object [4], [5], [6]. The

performance of these methods is highly dependent on having

a comprehensive training dataset, which contains sufficient

number of labelled examples of objects of interest along

with negative examples. It is costly and often impractical

to obtain such a training set, where each class is known and

completely represented for different view-points and lighting

conditions. Instead, we collect training examples online in a

self-supervised framework, without any prior knowledge of

the object’s shape, location or visual appearance.

The work presented here falls within the self-supervised

classification category, however we restrict ourselves to the

1A. Bewley and B. Upcroft are with the School of Electrical Engineering
and Computer Science, Queensland University of Technology, Australia
{aj.bewley,ben.upcroft}@qut.edu.au

2V. Guizilini and F. Ramos are with the School of
Information Technologies, The University of Sydney, Australia
{vgui2872,fabio.ramos}@sydney.edu.au

Fig. 1: Example detection of multiple dynamic objects discovered using our
proposed method that corresponds to the input image sequence shown above.
The different colours (hue) in the output image represents the multiple object
instances detected, while the intensity denotes the likelihood of the assigned
class at each pixel. These objects were detected using only the motion of
the scene and not any off-line models describing the visual appearance of
the objects.

detection of only independently moving objects in the scene.

Here we are not concerned with assigning semantic labels

such as ‘car’ or ‘human’ to image regions. Rather we assume

that any dynamic object is an obstacle and needs to be

tracked in a dynamic motion planning framework. In order to

predict where each dynamic object will likely be located in

the future, it is desirable to separate the dynamic pixels into

independent groups with similar motion. To achieve this, we

go beyond the self-supervised binary classification of [1] to

identifying multiple independent motion regions within an

image as shown in Fig. 1.

This paper addresses several challenges absent in the

binary case. Firstly the input sequence need to be first seg-

mented into multiple spatially consistent motion segments.

Each motion segment must be assigned a temporally coherent

class label before used to train a multi-class classifier. Finally

multi-class classification is inherently more difficult than

binary classification, which is further exacerbated by the non-

stationary nature of video data.

The paper is organised as follows: In the next section we

review relevant literature, followed by a brief overview of the

proposed system in section III. In section IV we describe the

static segmentation and motion clustering of sparse optical

flow. In section V we detail the online process for using the

sparse motion clusters to update a non-parametric model en-

abling temporally consistent inference over the entire image

sequence. Section VI shows some results before conclusions

and outlook to future work in section VII.

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3685-4/14/$31.00 ©2014 IEEE 1296

II. RELEVANT LITERATURE

Over the last decade many algorithms have been developed

to detect obstacles from a moving platform using vision [7].

These methods often combine object recognition and visual

ego-motion estimation with occupancy maps. A tracking-

by-detection framework is commonly employed utilising

advancements in visual object recognition and can further

be improved by utilising 3D tracking from stereo images

[8]. However this method only detects pedestrians as it is

trained off-line for detecting humans.

The Random Sample Consensus (RANSAC) [9] paradigm

has been extended to model multiple motions from monoc-

ular vision simultaneously [10], however it is restricted to

only fitting rigid objects. Kitt et al. use a similar two stage

approach (RANSAC with an ensemble of extremely ran-

domised decision trees) [11] however their method requires

off-line training with hand-labelled training examples of all

likely situations. Another approach is to estimate the full

structure-from-motion of the camera with a robust estimation

of the ground plane [12].

An alternative to learning appearance models of the tar-

get objects is to build statistical models the background

appearance and temporal shifts online [13], [14]. Recent

advancements in compressive sensing [15], [16] led to new

approaches for extracting dynamic objects from monocular

video sequences, however these approaches have only been

demonstrated for the case of static or nominal camera mo-

tion.

The objective of this work is to segment regions of an

image sequence corresponding to individual moving objects,

observed from a mobile camera, without using offline train-

ing or prior knowledge of the location, shape or appearance

of the target objects. To robustly model the camera mo-

tion we estimate the epipolar geometry of matched points

within a RANSAC framework mirroring the initial binary

classification step in [1]. We also take inspiration from [17]

for clustering different motion regions before modelling the

spatial location and colour of dynamic objects in addition to

the static background.

III. SYSTEM OVERVIEW

The work presented here builds on the binary dynamic

classification work by Guizilini and Ramos [1] by extending

it to segment multiple objects. An overview of the proposed

system is illustrated in Fig. 2 and can be described using the

following pipeline:

1) As in [1] sparse optical flow is computed by matching

key-points from the current and previous frames as new

images are acquired.

2) The optical flow vectors corresponding to the static

environment are identified by fitting a motion model

within a RANSAC framework to account for outliers.

3) The outliers of the previous step undergo density based

clustering to identify independent motion in the scene

and remove mismatched key-points.

4) The static and dynamic clusters are then used to in-

crementally update a multi-class non-parametric kNN

model by matching each cluster to either an existing

class or a new class.

5) This non-parametric model is then used to infer the

object instance for any pixel in the image.

IV. DYNAMIC OBJECT DISCOVERY

The online detection of dynamic objects begins with an

initial segmentation of the sparsely matched key-points from

two consecutive frames. These motion segments provide

a continuous source of training examples to update the

dynamic object classifier described in the next section with

new objects and new views of existing objects. The motion

clustering happens in two stages, firstly separating static and

dynamic points followed by clustering the dynamic points

into groups representing consistent motion.

The sparse optical flow is computed by first detecting

salient image features using both ‘SURF’ [18] and ‘Good

Features to Track’ [19]. Using a combination of feature

detectors provides reasonable coverage of the image space,

including corners, edges and textured areas. The optical flow

of these features is extracted by computing the ‘BRISK’

descriptor [20] of each point and compared to the features

detected in the previous frame. This essentially extracts

a sparse sampling of the optical flow across the image,

providing a basis for motion segmentation described in this

section.

A. Static and Dynamic Classification

The process of detecting dynamic objects begins with the

binary classification of static and non-static key-points. In

this step the global image motion is estimated to account for

optical flow generated by the camera motion itself. When the

camera is moving, the optical flow from static points in the

world are constrained by the epipolar geometry of the two

viewpoints.

We classify static points using the epipolar constraint that

describes the motion of key-points from two viewpoints

using the fundamental matrix [21]. A suitable technique

for this is the RANSAC algorithm robust to outliers from

the dynamic objects and has been demonstrated as a basis

for online classification of static and dynamic points [1].

With sufficient key-points for the static environment, the

RANSAC algorithm should elect the fundamental matrix that

best represents the camera motion. Therefore, any matched

key-point that lies on the epipolar line defined by both the

estimated fundamental matrix and the corresponding key-

point in the previous frame should belong to a static object.

Point matches that do not fit the epipolar geometry are further

processed as described in the next section.

B. Dynamic Point Clustering

So far the point correspondences have only been separated

into static and dynamic binary classes. We extend this to in-

clude multiple instances of moving objects within the image,

by grouping similar and separating dissimilar dynamic points

based on motion. This grouping task can be formulated as a

1297

Fig. 2: An overview of the object extraction and learning process used in this paper.

clustering problem for an unknown number of clusters with

noise introduced by mismatched key-points.

For characterising the motion of key-points, both the

image location and optical flow velocity of the non-static

features are used to represent the image motion of the

corresponding object. By only considering the non-static

features for clustering, we limit the computation required

along with providing a larger separation between points. Let

the motion feature vector w corresponding to each dynamic

key-point describing both the image position(u, v) and inter-

frame displacement (u̇, v̇) as:

w = [u, v, u̇, v̇]T .

To cluster the dynamic points we chose an algorithm

which doesn’t require the number of clusters to be known a

priori, suitable for non-rigid objects and can identify outliers

which correspond to mismatched features. For this we choose

to use the Density Based Spatial Clustering Analysis with

Noise (DBSCAN) algorithm [22]. DBSCAN is governed by

two parameters: a radius ǫ and the minimum number of

points to form a cluster minPts which essentially defines

the minimum local density of a cluster.

The motion features for the set of dynamic points (wi, i ∈
DynamicSet) are used as the input to the DBSCAN al-

gorithm. Using the average key-point density in the image

we can evaluate suitable neighbourhood density parameters

(ǫ and minPts) for grouping features corresponding to

the moving objects in the scene. The density is estimated

using the average key-point density in the 2D image and

assuming that adjacent key-points on the same object will

share similar inter-frame displacements as opposed to if they

lie on different dynamic objects. For example if two points

wp and wq on the same object have similar motion i.e.

‖wp − wq‖ ≈ ‖(up, vp)− (uq, vq)‖ and the main difference

lies in their relative image position. If p and q are from

different objects or different parts of the image we expect

high separation in position and motion space respectively

thus reducing the likelihood these points would share a

common neighbourhood.

Fig. 3: Sparse optical flow vectors grouped by motion. Static points are
shown in black, while the dynamic points are coloured by their cluster
assignment. Points with low density in motion space (considered noise) are
marked in white.

Using the average matched key-point density (n/(width×
height)) of the current frame we can automatically set the

ǫ radius to be:

ǫ2 =
minPts · width · height

nπ
, (1)

where n is the number of matched key-points including static

and dynamic in the frame. The minPts parameter is explicit

set to the minimum number of points we expect in a cluster.

We found that setting minPts to 10 is a good compromise

between the number of false clusters and missing clusters.

Points with fewer than minPts in their ǫ neighbourhood

are considered as noise within the DBSCAN framework,

unless on the boundary of a dense cluster. This attribute of

DBSCAN essentially eliminates non-static points caused by

mismatches in optical flow as observed in Fig. 3.

V. DYNAMIC KNN CLASSIFICATION

While the motion clustering method described in the

previous section can identify both individual dynamic objects

in the current frame and previously unseen objects, it has

limited use for object tracking as it does not maintain any

memory of which objects were previously identified. Here we

introduce a self-supervised classifier for associating currently

detected clusters with previously found objects. Knowledge

of previous objects can be maintained for short durations if

temporally occluded or when an object is missed due to the

1298

number of matched key-points dropping below the minPts
threshold required by DBSCAN.

The k-nearest neighbour (kNN) classifier provides a suit-

able mechanism for this task, as it’s capable of representing

complex decision boundaries and naturally supports multi-

class classification problems, while being simple to imple-

ment [23]. As the name suggests, the k nearest neighbour

algorithm assigns a class label to an unlabelled test point by

considering the distance to and frequency of labels amongst

the k nearest neighbours in the model. This enables the kNN

classifier to represent complex and non-Gaussian decision

boundaries defined by the representative data. For finding

the k nearest neighbours, we use the randomised kd-trees

method described in [24] to achieve efficient search time

with precision guaranteed in Euclidean space.

The kNN classifier is trained with a set of input feature

vectors xi that describe the image location and colour of the

each key-point along with the assigned cluster number ki.
The input feature vector x is defined as:

x = [u, v, S · cos(H), S · sin(H), V]T ,

where H,S, V are the hue, saturation and intensity value

(HSV) of the pixel located at (u, v) in the image. The

HSV colour space is chosen over the RGB colour to limit

sensitivity of lighting to a single channel.

For clarity, in this section we refer to clusters as the output

of the unsupervised approach for the current frame and class

labels as the temporally consistent moving object identifier

stored in the kNN classifier. Also note that k = 0 represents

the static cluster from RANSAC while k = 1...K is a unique

identifier for the individual dynamic clusters found using

DBSCAN for the current frame.

This classifier is initialised with the initial clusters found

in the first pair of frames and then incrementally updated

there after. Clusters found in subsequent frames are used to

continuously update the kNN non-parametric model allowing

it to adapt to the changing dynamics of the scene using

a continuous supply of training examples. However, the

cluster numbers of the dynamic objects are arbitrary in the

unsupervised framework and need to be matched to the class

numbers representing previously discovered objects.

In the remainder of this section, we detail the inference

method used for predicting new class labels, address the

issues of cluster to class association and manage the growth

of the model through selective updating and structured for-

getting of uninformative points.

A. Inference

A drawback of the standard majority voting classification

in this application arises due to the static class being excep-

tionally more frequent than any dynamic class and essentially

dominates the feature space near the decision boundaries. To

help alleviate this problem we use a probabilistic soft-max

weighting function to evaluate the conditional probability of

assigning the label c to test point x as follows:

p(c|x,Nk(x)) = argmaxc

(
∑

i∈c∩Nk(x) e
−‖xi−x‖2

∑

i∈Nk(x) e
−‖xi−x‖2

)

,

(2)

where Nk(x) are the kNN points from x in the non-

parametric model. This essentially weights the votes from

each neighbour by their proximity to the test point.

B. Cluster Association

As subsequent frames provide new key-point examples

of dynamic objects, these clusters need to be associated

to previously seen objects or assigned to a new object.

Evaluating the appropriate and temporally consistent class

label for a given cluster is critical for the classifier to

continuously build on its knowledge of a specific object.

Here the classifier itself is used to predict the class labels of

the new training clusters and resolve inconsistencies through

information filtering.

Cluster association is achieved through an initial step

of inferring the class label of each supplied training point

and comparing its overlap ratio of class labels and cluster

numbers. This is equivalent to assigning each cluster to the

class with the highest Jaccard similarity coefficient [25].

Given all key-points of cluster K and the set of key-points

classified with label C (denoting an existing object in the

non-parametric model), the Jaccard coefficient is computed

as:

J(K,C) =
|K ∩ C|

|K ∪ C|
. (3)

The clustering result of the current frame is compared to

the output of the dynamic kNN classifier to evaluate new

objects and update existing objects. Given the cluster labels

and predicted class assignments for each key-point provided

in the current frame’s training set, we take a greedy approach

by remapping the entire cluster to the class number with the

highest Jaccard coefficient; a point pck jointly assigned to

class c and cluster k is reassigned to the c∗ that has the

highest Jaccard coefficient voted by all point in the same

cluster.

The discrepancies between the predicted class labels and

the consensus/remapped class labels can be further used

to identify anomalies in the temporal consistency of the

unsupervised clustering and identify clusters representing

new/unseen objects. For example, in the top row of Fig.

4, a non-static cluster found corresponding to the entering

car on the left, doesn’t match any existing dynamic labels

signifying the need for a new class label (represented as red

in the output image). If this cluster was a false positive, it is

expected that the cluster is not temporally coherent and that

current and future static points located in the same region

of the input space will rectify this scenario in the forgetting

step.

C. Updating

Using the assigned labels from the cluster association,

kNN learning is as simple as adding an example point to the

1299

Fig. 4: Examples of temporal coherent label output of the proposed method. Top row shows the immediate detection of a car as it enters the scene denoted
by the red cluster introduced in the middle frame. The bottom row demonstrates correct label assignments are maintained over multiple frames, even during
temporary occlusion of the pedestrian on the right of the image.

non-parametric model. To minimise the unbounded growth

rate of the model, new points are filtered before being added

to the model. New points are only inserted if the inferred

class at the feature location differs from the reassigned

cluster label or if the local density of the input point is low.

Additionally, as the state of dynamic objects naturally

change over time, it is desirable to reflect this behaviour in

the classification process. This has many advantages over a

stationary kNN classifier, particularly in regions of occlusion

and dis-occlusion (see bottom row of Fig. 4). As we are

already computing the sparse optical flow for our learning

examples we can re-use this computation to set the temporal

state of each individual training sample.

The kNN is updated by evaluating xt−1 at each key-point

location in the previous image and xt in the current image

using the optical flow correspondence. The temporal partial

derivative of each point is approximated as:

δx/δt = xt − xt−1.

After new examples are added to the kNN database the entire

non-parametric model is updated using the partial derivatives:

xt+1 = xt + δx/δt.

This keeps the learnt input values relevant as points move

though the image and gradually change colour as lighting

conditions change. At this point, we rebuild the kd-tree

structure for efficient kNN inference on the updated point

set.

D. Forgetting

As more points are added to the non-parametric model in

the learning phase the speed of inference degrades. As the

scene evolves over time many points added to the model

become irrelevant and overcrowded by points with mixed

labels. This has a detrimental effect on the speed of inference

as the size of the model continues to grow. Unlimited growth

is restricted in a number of ways:

1) Firstly, we actively search for irrelevant data points

by performing inference on each point in the model

and removing points classified with a different class to

their assigned labels. This is a common outlier detection

method used for kNN and is analogous to the Gaussian

Process feature filtering component of [1].

2) Secondly, as we propagate points in our model, points

with non-zero velocity eventually exit the input volume

bounded by the image dimensions. This input boundary

is evaluated and expanded by checking the minimum

and maximum values of each input dimension. Any

point in the model propagated outside the boundary by

a user selected margin is considered irrelevant and is

discarded. The default value of this margin is set to the

maximum average velocity defined by the optical flow

evaluated in a similar fashion to the boundary itself.

3) Finally, as misclassified points are removed in the first

step there is the potential the area would be over

represented by points with uniform labels. These points

are removed by limiting the maximum density within

the non-parametric model with uniform class labels.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed method we first consider its

performance in segmenting dynamic from static objects and

compare to other online learning methods. Then we measure

the performance of continuously segmenting dynamic objects

on a multi-instance basis using a hand annotated sequence

taken from the KITTI dataset [3].

A. Online static vs dynamic classification

For comparison to other static/dynamic binary classifi-

cation methods we use the receiver operator characteristic

1300

Fig. 5: Detected dynamic objects from the Sydney dataset. In this frame the
truck and car on the opposite side of the intersection are considered as a
single object as they share similar motion. The red object is a false positive
due to the lack of texture on the road. It is expected that this system would
be combined with a ground plane estimator to remove these false positives
and shadows if deployed specifically for road applications.

(ROC) curve, generated by varying the discriminative prob-

ability threshold on 1−p(static|x) (of equation 2). A larger

area under this curve indicates a better overall performance

in all threshold levels. This provides a graphical illustration

of the true positive rate vs. the false positive rate. To evaluate

the ROC curve performance for the proposed system we

use the same ground truth dataset of [1], consisting of 100

frames taken from various sections of a 1500 frame dataset

taken from a moving vehicle around the city of Sydney. This

dataset contains a significant variance in lighting conditions,

as the camera moves in and out of building shadows creating

high contrast in the visual appearance of dynamic objects

(see Fig. 5). With the exception of [1], Fig. 6 shows

that our proposed method outperforms several other online

techniques including an optical flow based classification

of [26]. However, it should be noted that all these other

methods are binary classifiers and their one-vs-all multi-class

equivalent would generally require a single instance classifier

for each cluster found as opposed to the kNN classifier which

naturally handles multi-class data.

Fig. 7 shows how the accuracy varies in terms of area

under the ROC curve for different values of k. The im-

provement shown by increasing k can be contributed to the

Fig. 6: Receiver Operator Characteristic (ROC) curves over 100 frames
from the Sydney dataset and comparison to other online dynamic object
segmentation algorithms including: an optical flow based classification of
[26], Incremental SVM [27] and the Gaussian Process methods from [1].
Our method outperforms all other techniques except for [1]. However, it
must be noted that all these methods are binary classifiers whereas ours
includes multiple instances. The effectiveness of multi-instance classification
is evaluated in the following experiments.

smoothing effect of sampling more neighbours, which is

beneficial in texture-less areas with a high false positive rate.

This gain is ultimately limited as k becomes significantly

larger than the number of samples on small and distant object

leading to miss detections.

B. Online motion clustering

Since the Sydney dataset was originally produced for static

/ dynamic classification, it only contains binary labels in the

form of an image mask. This paper is mostly concerned with

not only detecting a moving object, but also discriminating

between each dynamic object. Due to the complexity of

labelling for multiple instances of dynamic objects, existing

hand labelled dataset with pixel-wise semantic labels are

not suited to evaluate the effectiveness of our algorithm.

We address this by hand labelling the bike image sequence

from [3] with pixel-wise annotations of the individual objects

and use the V-measure proposed in [28] as a guide of

how well the system can segment these objects. The V-

measure is chosen as it combines two desirable aspects of

clustering, homogeneity (each cluster contains only members

of a single class) and completeness (all members of the same

class are contained in a single cluster), without explicitly

assigning semantic labels to each cluster. Our online motion

clustering system attains a V-measure of 0.24 comprised of

a completeness score of 0.31 and homogeneity score of 0.19

as defined in [28].

Since the system doesn’t go as far as assigning seman-

tically meaningful labels to each cluster, we evaluate the

system’s performance in handling multiple instances by

visualising the cluster purity and completeness in Fig. 8.

This plot shows the true object composition spread across the

static cluster (left most column) and the ten largest dynamic

1301

0 5 10 15 20 25 30 35 40 45 50
0.8

0.85

0.9

0.95

1

k

A
re

a
 u

n
d

e
r

R
O

C
 c

u
rv

e

0 5 10 15 20 25 30 35 40 45 50
0

1

2

T
im

e
 (

s
e

c
o

n
d

s
)

Fig. 7: Comparing performance (dotted dashed blue) along with the update
(solid green) and inference (dashed green) computation times for different
number of k neighbours on the Sydney dataset. The performance is
measured by the area under the ROC curve such that larger values indicate
a better overall performance in terms of true positive and false positive rates
for all threshold levels. This experiment shows that increasing k improved
the overall performance up to k = 30, however, this improvement is at the
cost of longer computation times.

clusters (in terms of the number of pixels). The colours in

each bar represents the true object instance label with the

hight of each interval denoting the ratio of overlap between

that true class and the object cluster. The bar magnitudes

have been normalised to aid visibility of object instances

which are only present in a few frames, such as the car and

pedestrians.

This plot can be interpreted as: the first pedestrian was

not detected, the other true classes are generally contained

within a single object cluster. The van and bike classes have a

significant portion of the static background within this cluster

as the white van shares similar colour to the nearby saturated

road surface and for the bike a few key-points around the

wheels tend to have the same colour as the road making

the colour spread to the texture-less road where there are

few true static key-points to correct this. After the system

has had time to sufficiently sample the static background

the introduction of new dynamic objects such as the car

(see top row of Fig. 4) and second pedestrian tend to be

more homogeneous. This is largely due to colour change in

the localised region input space near the new object tends

to be under represented by the static class. We have also

run this system on different image sequences to consider it’s

generality and in environment where there is good contrast

between the colour and the environment we observe that the

system can accurately segment different dynamic objects (see

Fig. 9).

C. Computational cost

A prototype of this algorithm was implemented in C++,

making extensive use of the OpenCV 2.4 library, and was

deployed on an Intel i7 machine with 8GB RAM. The total

time from image acquisition to training and then inferring the

Fig. 8: Visual representation of the class/cluster composition over the KITTI
Bike Sequence with individually pixel-wise annotated objects. The columns
represent the clusters found by the algorithm with cluster 0 the static cluster
and the colours represent the ratio of true class labels for pixels of that
cluster.

Fig. 9: Moving segments of mining dataset. This shows all moving parts
of the scene has been accurately detected. The truck undergoing loading is
stationary.

presence of dynamic objects across the entire image takes

3.5 seconds, with the breakdown times shown in Table I.

This was evaluated by taking the average frame processing

time for a typical image sequence from the Sydney [1] and

KITTI [3] datasets, with resolution shown in pixels and time

in seconds. The two main components which consume the

majority of the time are the key-point matching and the kNN

training. There are many alternative point trackers which can

supply sufficient number of key-points correspondences that

when implemented on parallel hardware is capable of real-

time performance (e.g. [29]). Furthermore, other forms of

efficient indexing, such as Locality Sensitivity Hashing [30],

could potentially be a faster choice for nearest neighbour

searching in various components of this application, requir-

ing further investigation.

1302

Dataset Sydney (640 x 480) KITTI (1242 x 375)

Point Matching 0.35 0.98
RANSAC Fitting 0.09 0.19
Motion Clustering 0.02 0.02
kNN Training 0.63 2.01
Dense kNN Inference 0.11 0.31

Total 1.20 3.51

TABLE I: Average execution times by section (seconds per frame) with
k = 30.

VII. CONCLUSION

In this paper we have proposed a method for com-

bining unsupervised motion clustering in a self-supervised

framework, for the purpose of segmenting multiple dynamic

objects from a monocular image sequence. Furthermore, the

segments from each frame are made temporally coherent

through the continuous inference, remap and update learning

cycle. We have evaluated this approach quantitatively using

the original 100 frame dataset of [1], in addition to qualita-

tively evaluating the multi-class performance on a range of

datasets which differ in context. While the binary dynamic

segmentation of [1] has better detection performance, we

believe this to be an important step towards multiple object

tracking and ultimately instance based object characterisation

in an unsupervised framework.

In future work, we plan to optimise the individual system

components further with respect to run-time and perfor-

mance. Additionally, the ability to segment whole objects

in an unsupervised framework opens many opportunities in

object tracking and visual appearance learning.

ACKNOWLEDGMENT

This research has been supported by the Australian Coal

Association Research Program (ACARP). The authors would

also like to give thanks to Lionell Ott for providing access

to a custom cluster assignment plotting tool.

REFERENCES

[1] V. Guizilini and F. Ramos, “Online self-supervised segmentation
of dynamic objects,” in International Conference on Robotics and

Automation, 2013.
[2] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A

benchmark,” 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 2009.
[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? The KITTI vision benchmark suite,” in 2012 IEEE Confer-

ence on Computer Vision and Pattern Recognition. IEEE, Jun. 2012,
pp. 3354–3361.

[4] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection
and people-detection-by-tracking,” 2008 IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 1–8, Jun. 2008.
[5] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with

partial occlusion handling,” in International Conference on Computer

Vision, no. Iccv. IEEE, Sep. 2009, pp. 32–39.
[6] P. E. Rybski, D. Huber, D. D. Morris, and R. Hoffman, “Visual

classification of coarse vehicle orientation using Histogram of Oriented
Gradients features,” in 2010 IEEE Intelligent Vehicles Symposium.
Ieee, Jun. 2010, pp. 921–928.

[7] S. Wangsiripitak and D. Murray, “Avoiding moving outliers in visual
SLAM by tracking moving objects,” in 2009 IEEE International

Conference on Robotics and Automation. IEEE, May 2009, pp. 375–
380.

[8] A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “Moving obstacle
detection in highly dynamic scenes,” in International Conference on

Robotics and Automation. IEEE, 2009.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[10] K. Ni, H. Jin, and F. Dellaert, “GroupSAC: Efficient consensus in
the presence of groupings,” in International Conference on Computer

Vision. IEEE, Sep. 2009, pp. 2193–2200.
[11] B. Kitt, F. Moosmann, and C. Stiller, “Moving on to dynamic

environments: Visual odometry using feature classification,” in 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Oct. 2010, pp. 5551–5556.

[12] K. Yamaguchi, T. Kato, and Y. Ninomiya, “Vehicle Ego-Motion
Estimation and Moving Object Detection using a Monocular Camera,”
International Conference on Pattern Recognition (ICPR), pp. 610–613,
2006.

[13] K. Patwardhan, G. Sapiro, and V. Morellas, “Robust foreground
detection in video using pixel layers,” IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), vol. 30, no. 4, pp. 746–
751, Apr. 2008.

[14] T. Bouwmans, “Recent advanced statistical background modeling
for foreground detection: A systematic survey,” Recent Patents on

Computer Science, vol. 4, no. 3, pp. 147–176, 2011.
[15] R. Sivalingam, A. D’Souza, M. Bazakos, and R. Miezianko, “Dic-

tionary learning for robust background modeling,” in International

Conference on Robotics and Automation (ICRA). IEEE, May 2011,
pp. 4234–4239.

[16] C. Lu, J. Shi, and J. Jia, “Online robust dictionary learning,” in
Computer Vision and Pattern Recognition. IEEE, Jun. 2013, pp.
415–422.

[17] D. Almanza-Ojeda, M. Devy, and A. Herbulot, “Active method for
mobile object detection from an embedded camera, based on a
contrario clustering,” Informatics in Control, Automation and Robotics,
vol. LNEE 89, pp. 267–280, 2011.

[18] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding (CVIU),
vol. 110, no. 3, pp. 346–359, 2008.

[19] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision

and Pattern Recognition (CVPR). IEEE Comput. Soc. Press, 1994,
pp. 593–600.

[20] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in International Conference on Com-

puter Vision (ICCV). IEEE, Nov. 2011, pp. 2548–2555.
[21] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[22] M. Ester, H.-p. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in International Conference on Knowledge Discovery and Data

Mining, 1996.
[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.

Wiley-Interscience, 2001.
[24] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with

automatic algorithm configuration,” in International Conference on

Computer Vision Theory and Application. INSTICC Press, 2009,
pp. 331–340.

[25] R. Real and J. M. Vargas, “The probabilistic basis of Jaccard’s index
of similarity,” Systematic Biology, vol. 45, no. 3, pp. 380–385, 1996.

[26] C. Liu, “Beyond Pixels: Exploring New Representations and Applica-
tions for Motion Analysis,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2009.

[27] C. Diehl and G. Cauwenberghs, “Svm incremental learning, adaptation
and optimization,” in Proceedings of the International Joint Confer-

ence on Neural Networks, vol. 4. IEEE, 2003, pp. 2685–2690.
[28] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-

based external cluster evaluation measure,” in Proceedings of the

2007 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-

CoNLL), no. June, 2007, pp. 410–420.
[29] M. Garrigues and A. Manzanera, “Real time semi-dense point track-

ing,” Image Analysis and Recognition, vol. 7324, pp. 245–252, 2012.
[30] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-

sensitive hashing scheme based on p-stable distributions,” in Sympo-

sium on Computational Geometry, 2004.

1303

