
Mobile Robot Navigation System in Outdoor Pedestrian Environment
Using Vision-Based Road Recognition

Christian Siagian* Chin-Kai Chang* Laurent Itti

Abstract— We present a mobile robot navigation system
guided by a novel vision-based road recognition approach. The
system represents the road as a set of lines extrapolated from
the detected image contour segments. These lines enable the
robot to maintain its heading by centering the vanishing point
in its field of view, and to correct the long term drift from
its original lateral position. We integrate odometry and our
visual road recognition system into a grid-based local map
that estimates the robot pose as well as its surroundings to
generate a movement path. Our road recognition system is able
to estimate the road center on a standard dataset with 25,076
images to within 11.42 cm (with respect to roads at least 3 m
wide). It outperforms three other state-of-the-art systems. In
addition, we extensively test our navigation system in fourbusy
college campus environments using a wheeled robot. Our tests
cover more than 5 km of autonomous driving without failure.
This demonstrates robustness of the proposed approach against
challenges that include occlusion by pedestrians, non-standard
complex road markings and shapes, shadows, and miscellaneous
obstacle objects.

I. INTRODUCTION

Mobile robot navigation is a critical component in creating
truly autonomous systems. In the past decade, there has
been tremendous progress, particularly indoors [1], as well
as on the street for autonomous cars [2], [3]. Because of the
confined nature of indoor environments, proximity sensors
such as the Laser Range Finder (LRF) play a large role in
estimating robot heading. Also, with the introduction of the
Velodyne [4], which provides dense and extended proximity
and appearance information, robust and long-range travel
on the road [3] is now possible. However, such is not the
case for autonomous navigation in unconstrained pedestrian
environments for applications such as service robots (observe
figure 1).

Pedestrian environments pose a different challenge than
indoors because they are more open with far fewer sur-
rounding walls, which drastically reduces the effectiveness
of proximity sensors to direct the robot. At the same time,
pedestrian roads are much less regulated than the ones driven
on by cars, which provide well specified markings and

* equal authorship.
C. Siagian is with the Division of Biology, California Institute of

Technology, Division of Biology 216-76, Caltech, Pasadena, California,
91125, USA.siagian@caltech.edu

C.-K. Chang is with Department of Computer Science, Univer-
sity of Southern California, Hedco Neuroscience Building -Room
3641, 10 Watt Way, Los Angeles, California, 90089-2520, USA.
chinkaic@usc.edu

L. Itti is with the Faculty of Computer Science, Psychology,and Neu-
roscience, Univesity of Southern California, Hedco Neuroscience Building
- Room 30A, 3641 Watt Way, Los Angeles, California, 90089-2520, USA.
itti@pollux.usc.edu

Fig. 1. Beobot 2.0 performing autonomous navigation in an unconstrained
outdoor environment (college campus) and among people. Therobot has to
solve two sub-problems: road heading estimation and obstacle avoidance.
Beobot 2.0 estimates the road heading visually, which is more difficult in
this type of environment than indoors or on highways, because of complex
road markings, surface textures, and shapes, shadows, and pedestrians.

boundaries. Furthermore, because the Velodyne is still pro-
hibitively expensive for mass production, more widespread
and affordable cameras become an attractive alternative.

One approach to heading estimation is through the use
of teach-and-replay paradigm [5], [6]. The robot is first
manually steered through a specific route during the teaching
stage, and is then required to execute the same exact route
during autonomous operation. The success of the technique
depends on being able to quickly and robustly match the
input visual features despite changes in lighting conditions
or in the presence of dynamic obstacles. Another concern
is how to get back to the set route when the robot has to
deviate from it momentarily while avoiding novel obstacles
(pedestrians), although recent improvements [7] have shown
promising results.

Road recognition, on the other hand, not limited to a set
path, is designed to readily work on any road without the
requirement of prior manual driving. One approach relies
on modeling the road appearance using color histograms
[8], [9]. This approach assumes the road is contiguous,
reasonably uniform and different than the flanking areas [10].
In addition, to ease the recognition process, the technique
usually simplifies the road shape (as viewed from the robot)
as a triangle. These assumptions are oftentimes violated in
cases where there are complex markings, shadows, mixtures
of roads and plazas, or pedestrians on the road (observe
figure 1). Furthermore, they also do not hold when the road

Edgemap Calculation

Vanishing Point VotingRoad Segment Detection Extract Road Lines

Tracking/Forward Projection

Input Image

VP and Lateral Position

Refinement

Beobot 2.0

Robot Navigation

Fig. 2. Overall visual road recognition system. The algorithm starts by creating a Canny edgemap from the input image. The system has two ways to
estimate the road, one is using the slower full recognition step (the top pipeline), where it performs road segment detection, which are used for vanishing
point (VP) voting as well as road line extraction. The second(bottom) is by tracking the previously discovered road lines. The same tracking mechanism
is also used to project forward new road lines from the top pipeline, through the incoming unprocessed frames accumulated while it is computing. The
road recognition system then outputs the road direction as well as the robot lateral position to the navigation system. It then proceeds to compute a motor
command, to be executed by our robot, Beobot 2.0.

appearance is similar to the flanking areas.

Another way to recognize the road is by using the van-
ishing point (VP) in the image. Most systems [11], [12],
[13] use the consensus direction of local textures or image
edgels (edge pixels) to vote for the most likely VP. However,
edgels, because of their limited scope of support, can lead
to an unstable result. Furthermore, these systems also attach
a triangle to the VP to idealize the road shape.

Our contributions start by presenting a novel VP detec-
tion algorithm that uses long and robust contour segments.
We show that this approach is more robust than previous
algorithms that relied on smaller and often noisier edgels.
We then flexibly model the road using a group of lines,
instead of the rigid triangular shape. We demonstrate how
this yields fewer mistakes when the road shape is non-
trivial (e.g., a plaza on a university campus). In addition,we
design and implement an autonomous navigation framework
that fuses the visual road recognition system with odometry
information to refine the estimated road heading. Taken
together, we find that these new components produce a
system that outperforms the state of the art. First, we are able
to produce more accurate estimates of the road center than
three benchmark algorithms on a standard dataset (25,076
images). Second, implementing the complete system in real-
time on a mobile robot, we demonstrate fully autonomous
navigation over more than 5 km of different routes on a
busy college campus. We believe that our study is to date
the largest-scale successful demonstration of an autonomous
road finding algorithm in a complex campus environment.

We describe our model in section II and validate it in
section III using Beobot 2.0 [14] in multiple outdoor envi-
ronments. We test the different components of the system,
and environmental conditions including shadows, crowding,

and robot speed. We discuss the main findings in section IV.

II. DESIGN AND IMPLEMENTATIONS

We first describe the visual road recognition system,
illustrated in figure 2, before combining its result with other
sensory data in sub-section II-D.

The vision system first takes the input image and performs
Canny edge detection to create an edge map. From here
there are two ways to recognize the road. One is through a
full recognition process (the top pipeline in figure 2), where
the system uses detected segments in the edgemap to vote
for the most likely VP and to extract the road lines. This
process can take a sizable time, exceeding the input frame
period. The bottom pipeline, on the other hand, is much faster
because it uses the available road lines and tracks them. In
both pipelines, the system then utilizes the updated lines to
produce an estimated road heading and lateral position of
the robot. The latter measures how far the robot has deviated
from the original lateral position, which is important, e.g., if
one wants the robot to stay in the middle of the road.

In the system, tracking accomplishes two purposes. One
is to update previously discovered road lines. The second
is to project forward the resulting new road lines through
the incoming unprocessed frames accumulated while the
recognition process is computing.

We describe VP detection in section II-A, the road line
extraction and tracking in section II-B, and the robot lateral
position derivation and estimation in section II-C.

A. Heading Estimation using Vanishing Point Detection

The recognition pipeline finds straight segments in the
edgemap using Hough transform, available in OpenCV [15].
It filters out segments that are above the manually calibrated
horizon line, and near horizontal (usually hover around the

horizon line) and vertical (usually part of objects or build-
ings). The elimination of vertical lines from consideration
takes out the bias of closeby objects from the road estimation
process. Horizon line calibration is done by simply denoting
the line’s pixel coordinate, and can be corrected online when
the road is not flat using an IMU. Another way to perform
online adjustment is to run a VP estimation for the whole
image intermittently in the background.

As illustrated in figure 3, the remaining segments vote for
candidate vanishing points (VP) on the horizon line, spaced
20 pixels apart and up to 80 pixels to the left and right of
a 320 by 240 image. By considering VP’s outside the field
of view, the system can deal with robot angles that are far
from the road direction, although not near or perpendicular
to the road.

To cast a vote, each segment is extended on a straight-line
to intersect the horizon line. The voting score of segment
s for a vanishing pointp (observe figure 3) is the product
of segment length|s| and the inverse proportion of the
proximity of p to the intersection point of the extended line
with the horizon line, denoted by the functionhintercept in
the equation below:

score(s, p) = (1.0−
|hintercept(s), p|

µ
) ∗ |s| (1)

Note thatµ is set to1/8th of image width or40 pixels,
which is the voting influence limit, with any segment farther
not considered.

hintercept(s)

ps

Fig. 3. Vanishing point (VP) voting. The VP candidates, indicated as disks
on the calibrated horizon line with radii proportional to their respective
accumulated votes from the detected segments. For clarity,the figure only
displays segments that supports the winning VP. A segments contributes
to a vanishing pointp by the product of its length and distance ofp to
the intersection point between the horizon line and a line extended froms

labeled ashintercept(s).

To increase the VP estimation robustness, the system
multiplies the accumulated scores with the inverse proportion
of the proximity to the VP location from the previous time
step. Note that the system replaces values in the second term
below0.1 with 0.1 to allow a small chance for a substantial
jump in the VP estimate.

vpt = argmax
p

∑

s

score(s, p) ∗ (1.0−
|p, vpt−1|

µ
) (2)

We then use the segments that support the winning VP,
indicated in red in figure 3, to extract lines for fast road
tracking.

B. Road Line Extraction and Tracking

We chose a line representation, instead of storing individ-
ual segments, because it is more robust for tracking. The
system first sorts the supporting segments based on their
lengths. It then fits a line through the longest segment using
least-squares. The system then adds any of the remaining
segments that are close enough (if all the edgels in the
segment are within 5 pixels) to the line, always re-estimating
the line equation after each addition. Once all the segments
within close proximity are incorporated, the step is repeated
to create more lines using unclaimed segments, processed in
length order. To discard weakly supported lines, the system
throws away lines that are represented by less than 50 edgels
in the map. We call this condition the support criterion.

horizon support line

horizon line

Fig. 4. Line tracking process. The system tracks a line equation from the
previous frame (denoted in yellow) in the current edgemap byfinding an
optimally fit line (orange) among a set of lines obtained by shifting the
horizontal coordinate of the previous line’s bottom point (bottom of the
image) and horizon support point (intersection point of line and the horizon
support line) by +/- 10 pixels with 2 pixel spacing. The fitness is based on
the score in equation 3. The set of candidate shifted points is shown in red
on the bottom and on the horizon support line.

Given a line equation from the previous frame, and the
current edgemap, the system calculates the new equation by
perturbing the line’s horizon support point and road bottom
point, as illustrated in figure 4. The former is the line’s
intersection point with a line 20 pixels below the horizon
line (called the horizon support line), while the latter is an
onscreen intersection point with either the bottom or the side
of the image. The system searches through the surrounding
spatial area of the two end points to find an optimally fit
line by shifting the horizontal coordinate of each point by
+/- 10 pixels with 2 pixel spacing. The reason for using the
horizon support line is because we want each new candidate
line, when extended, to intersect the horizon line on the same
side of where it came from. That is, if the candidate line
intersects the bottom of the image on the left side of the VP,
it should intersect the horizon line on the left as well. We
find that true road lines almost never do otherwise.

The highest scoring candidate is calculated by dividing the
total number of segment edgels that coincide with the line
equation over total number edgels possible that are below
the horizon line and in the image:

fitness(l) =

∑
s<inline(l) |s|

totalPossible(l)
(3)

that also passes the support criteria is the new tracked
line. If none exists, the tracked line is assigned a zero score
and kept as is. After each track the system assesses the
condition of each line. Any newly spawned lines will be
kept for observation for their first seven frames, regardless
of the fitness score. A line that scores above 0.5 in at least
five frames is kept and remains active until at least five of
the last seven scores fall below 0.3 (hysteresis). We label
the lines that have no scores below 0.3 the past 7 frames as
healthy. In the event a new road line nearly overlaps with a
tracked line, if their horizon support and road bottom points
are within 7 pixels total, we keep the line with the higher
fitness score.

The resulting lines can then be used to refine the VP by
performing a weighted average (based on the fitness scores)
of the horizon intercept points:

vp =
1∑

l fitness(l)

∑

l

fitness(l) ∗ hintercept(l) (4)

Note that this equation differs than equation 2 in that the
latter is a voting process, where the VP candidates are spaced
far apart, while here the VP is computed from road lines and
can be in any coordinate in the image.

If there are no lines at the current time step, the system
does not output a vanishing point. The robot will try to
maintain its heading using other means such as encoders
and IMU, explained in section II-D below. To integrate
the VP-based heading estimation with these sensors, the
system converts the VP pixel location to angle deviation
from the road heading. Assuming the camera is fitted with
a standard 60 degree field-of-view lens, the conversion is
linearly approximated from 0 degree deviation at the center
of the image to 27 degrees at the edge.

C. Robot Lateral Position Estimation

The estimated VP by itself is not accurate enough to
properly drive the robot. Even though the general heading
is correct, the robot slowly drifts to one side of the road,
which may disturb pedestrians. To rectify this, our system
locks in on the robot’s initial lateral position and tries to
maintain it. We decided to do this, instead of estimating the
true road center, because, often times, road boundaries [11],
[8], [13] cannot be visually ascertained, without additional
contextual and semantic information.

When the firsthealthy lines are detected, we set the on-
screen road bottom points as the canonical servo points.
When the robot moves, each road bottom point moves
to a new position. The lateral deviation is the horizontal
difference between the canonical and new coordinates on the

same vertical coordinate. Observe figure 5 for an illustration.
We take the weighted average of the deviation to calculate
the final estimate.

dev =
1∑

l fitness(l)

∑

l

fitness(l) ∗ dev(l) (5)

horizon support line

horizon line

Fig. 5. Lateral deviation estimation. The system estimatesthe lateral
deviation by averaging the road bottom shifts of all the tracked lines
(denoted in orange), weighted based on the equation 3 scores. Note that
this is the shift from the original line equation (denoted inyellow), when
the line is first spawned. The estimated lateral difference is the distance
between the orange and yellow stubs in the middle bottom of the image.

If at the time step a line is first used, the current estimated
lateral deviation is not 0, the resulting difference based
on it has to be offset by the deviation. When there are
no tracked lines, the system sets the lateral deviation to
zero and assumes the robot is near its original position.
When a usable set of lines becomes available, the current
lateral location is the new position to maintain. We use
an empirically calibrated bottom of the image single pixel
distance of 9.525mm to produce a metric lateral deviation.

The road recognition system then feeds the heading and
lateral position deviation to the local map navigation system.

D. Local Map Navigation

Beobot 2.0’s overall navigation system, as illustrated in
figure 6, takes in the visual road recognition output, as well
as Laser Range Finder (LRF) and odometry (from IMU and
encoders) values. The LRF is particularly useful for obstacle
detection and avoidance, while the IMU and wheel encoder
data supplement the visual road finding algorithm in difficult
conditions (e.g, sun shining into the camera). The local map
represents the robot’s local surroundings using a 64 by 64
grid occupancy map, where each grid cell spans a 15cm by
15cm spatial area. The robot location in the map is displayed
as a red rectangle and is located at the horizontal center
and three quarters down vertically to increase front-of-robot
coverage. In addition, there is a layer of grid surrounding
the map to represent goal locations outside of it. The figure
shows the goal to be straight ahead, which, by convention,
is the direction of the road.

To standardize the road direction estimation throughout
the system, the back-end navigation module (rightmost col-
umn in figure 6) calculates the absolute IMU road heading
by summing the estimated angular heading deviation from

BeoLRF

BeoIMU

Encoders

Differential

Drive Wheel

NavigationSensors

UKF Position Estimator

+

Visual Road Recognition

Perception

A* Path Planner

Elastic Band Smoothing

Dynamic Window Approach

Actuation

BeoCamera

Occupancy Grid Mapping

Motion Control

Beobot 2.0

Fig. 6. Beobot 2.0 autonomous navigation system. The systemutilizes sensors such as IMU and encoders to estimate robot odometry, LRF to create a
grid occupancy map, and camera to recognize the road. The information is then fused to create the robot’s local surrounding map, which estimates the
road and robot heading, and the surrounding obstacles. To reach the goal the system computes a path using the A*, deforms it maximally avoid obstacles
using the elastic band algorithm, and generates motion command that account for robot shape and dynamics using Dynamic Window Approach (DWA).

visual road recognition and the current IMU reading. In the
event IMU readings are not available, the heading values
become relative to the initial heading recorded by the wheel
encoders. To make the estimation more robust, the module
considers the last 100 absolute headings in a histogram
of 72 bins, each covering 5 degrees. It updates the road
heading estimate if 75% of the values reside within 3 bins
by averaging the values within those bins. In addition, it also
discards heading inputs that are farther than 30 degrees from
the current estimate, which usually occur during obstacle
avoidance by an adjacent or perpendicular road in the field
of view.

By approximating the road direction in absolute IMU
heading, the module does not directly couple vision-based
road recognition with motion generation. Instead it can also
use IMU readings to compute the robot’s heading either in
between recognition outputs or when the road is undetectable
visually.

To correct for lateral position deviation, the module adds
a small proportional bias to the heading which is calculated
using the deviation over the longitudinal distance to goal:

ang = angrobot + atan(dev/long(goal)) (6)

This is done because lateral correction is not an urgent
priority and at times more accurate approximation can only
be achieved if deviation is sufficiently large.

The grid occupancy map itself is filled by the LRF on the
robot. In this setup, unlike a Simultaneous Localization and
Mapping (SLAM) formulation, the odometry uncertainty is
not modeled. It is not critical to do so because the robot
quickly passes through the local environment and discards
any briefly accumulated errors.

The module then applies A* search to the map to find a
path to the goal. For each grid, the search process creates
eight directed edges to the surrounding nodes weighted by
the length of the edge plus the occupancy likelihood of the
destination grid. To encourage path consistency, we bias the
weight by adding the proximity of the destination grid to the
closest point in the previous A* path divided by the map
diagonal. If the distance is less than 2 pixels we zero out the
bias to allow for flexibility of finding a nearby optimum path.
To smooth out the path and allow for maximum avoidance
from the obstacle we apply the elastic band algorithm [16].

To compute the motor command from the deformed path,
the module utilizes the Dynamic Window Approach (DWA)
[17]. It not only calculates the deviation between the current
robot heading and the heading of the path’s first step, but
also takes into account the dynamics of the robot by only
considering commands within the allowable space set by
the previous command. Furthermore the approach then accu-
rately simulates each resulting arc trajectory of the allowable
commands, modeling the robot shape to test whether any part
of the robot hits or come close to hitting an obstacle.

III. TESTING AND RESULTS

We carry out three different testing procedures. In section
III-A, we test the performance of the vision road recognition
sub-system against other road recognition systems [8], [11],
[13] on a standard dataset [13]. We then demonstrate in
section III-B how each perceptual input that contributes to
the navigation system (wheel encoders, IMU, VP detection,
lateral deviation estimation) affects performance. In section
III-C, we evaluate the full system in real-time on a wheeled
robot operating under challenging conditions (variable road

Bookstore (BKS) Frederick D. Fagg Park (FDF)

Hellman Way (HWY) Leavey Library (LEA)

Fig. 7. Example images from the four testing sites, each of which accentuate different road characteristics. The road inFrederick D. Fagg park (FDF) is
uniform with well defined red boundaries. The road in front ofthe Bookstore (BKS) has many complex markings, while Hellman Way (HWY) is more
uniform, but curved. The road in front of the Leavey Library (LEA), on the other hand, is not explicitly delineated, and iswider than the rest. For each
site we display the road in various conditions: ideal, shadowed, and crowded.

appearance, the existence of shadows, robot speed, and
crowding).

For this full test, we select four key road types that
encompass different visual challenges, described in figure
7. We test using Beobot 2.0 (pictured in figure 6), which is
equipped with a camera and an LRF in front, 117cm and
60cm above the ground, respectively, as well as encoders
and IMU to calculate odometry. Beobot 2.0 computes the
canny edgemap in 3ms, hough segments in 20ms, VP voting
in 1ms, line extractions in 5ms, and line tracking in 3ms on
average.

A. Road Recognition System Comparison

We first test the system accuracy in recognizing road
center using an image dataset of robot navigation runs by
[13]. For our system, we provide the initial road center
location of each run as an offset to convert the relative lateral
deviation to the absolute road center.

The dataset consists of four sites – HNB, AnF, Equad,
SSL – with example images shown in figure 8. The dataset
provides manually annotated left and right road boundaries,
which are averaged to calculate the road center. We compare
the result with road recognition outputs to measure the error
in pixel unit, which is equivalent to one centimeter with the
dataset camera setup.

We compare our system with another VP based system
[11], a color histogram contrast system [8], and one that
combines both aproaches [13]. Note that all three idealize
the road using a triangular shape template. Figure 8 displays
the results.

Our system produces a better road center estimate on all
environments, on average, within 11.42cm of the ground
truth. It is generally more robust in instances where the road
shape are not triangular or when there is only one visible
road boundary, when the robot swerves away from the road
center, as shown in the second sample image in figure 8.

In addition, the system also benefits from the decoupling
of VP and road center estimation by directly and separately
computing them from the tracked road lines. In other systems
[11], [13], road center is estimated by extending a pair of
road boundaries (left and right side) from the VP. If the

10

20

30

HNB AnF Equad SSL Total

Our Model Chang, etal[15] Rasmussen, etal. [8] Kong, etal. [11]

E
rr

o
r

(c
m

)

**

N.S.

HNB AnF Equad SSL

**

**

Fig. 8. System comparison bar chart with example images of the four
environments. The bar graphs illustrate the performance ofour algorithm as
well as [11], [8], [13] in estimating the road center. Performance is measured
by the difference between the ground truth and estimated road center in cm.
Two stars indicates statistical significance p-value ofp < 0.01 and three
starsp < 0.005.

VP estimate is incorrect, the road center usually falls on a
random point in the image.

In some instances, such as in over-saturated or blurry
images, there may not be clear lines in the image because
the detected segments are not sufficiently aligned to form
even one line. In these cases, our system only provides
a vanishing point from the segment VP voting instead of
producing erroneous road shape when there is none visually.

B. Individual Part Contribution Testing

We assess the contribution of the different perceptual
inputs in the navigation system by systematically adding
each of them, from the simplest to the most computationally
complex. We first rely on encoder-only odometry, then IMU
and encoder-fused odometry, then adding VP, and finally
adding lateral position estimation. We start the robot in the
middle of the road and measure its lateral deviation as it
navigates through the road. We measure the ground truth by
manually recording the robot location at certain interval and
interpolating the positions in between. Testing is done five
times for each setup to obtain an average performance. If at

0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

2

2.5

Encoders

Encoders + IMU (IO)

IO + VP

IO + VP + Lat. Pos.

Distance Traveled (m)

L
a
te
ra
l
P
o
s
it
io
n
 (
m
)

Fig. 9. Example trajectory of autonomous navigation using various components of the presented visual road recognitionsystem. Here Beobot 2.0 has
to traverse through a 75m route on a 6.09m wide road, running from left to right. The encoder only odometry trajectory is denoted in green, while the
encoder and IMU odometry is red, IMU and VP magenta, and the full system with IMU, VP and lateral position estimation blue.The dashed line is the
center of the road and the figure only shows one side of the road

TABLE I

PARTS CONTRIBUTION EXPERIMENT

Length Avg Max. Stdev.

Encoders 34.68m 1.47m 2.70m 0.73m
Encoders + IMU (IO) 75.00m 1.30m 2.26m 0.52m

IO + VP 75.00m 1.31m 2.77m 0.93m
IO + VP + Lat. Pos. 75.00m 0.20m 0.70m 0.14m

any time the robot is in danger of falling off the road, we
stop it and only record the results up to that point.

We test the system on site FDF, where the 75 meter
long road is uniform gray in color with sizable red-colored
shoulders, seen in the first set of images in figure 7. The
full road width, including the shoulder, is 6.09m. Also,
in this experiment as well as the next, we do not turn
on the LRF for obstacle avoidance so that the robot can
keep moving straight. However, the people around the robot
can still occlude its view. Table I reports the experimental
results: average length traveled, average deviation from the
road center, as well as the deviation’s maximum value and
standard deviation.

As we can see, encoders by themselves perform the worst,
only able to complete an average of 34.68 m of the total
road length. To make a robot run straight through a road
using blind encoder odometry, the floor has to be perfectly
level, which is almost never the case. As for the IMU and
encoder infused navigation, the robot has to be aimed almost
perfectly to stay centered. Otherwise, as we observe the
typical trajectory in figure 9, the robot deviates from the
center of the road on a straight line. In addition, there are
some places where ambient IMU interference is quite strong,
particularly indoors, near buildings, or if there are structures
underneath the road.

The VP-only navigation system eventually also gets off-
course because our VP estimation is not accurate to the pixel
value. Thus, although it allows the robot to maintain a fairly
specific heading, there is usually a slight bias that slowly
drifts the robot to one side of the road. The full system,
with a far better 0.20m average error, is able to stay in the
middle of the road because the lateral deviation estimator
locks the robot on the spacings of the lines in front of it,

TABLE II

EXPERIMENT SITES INFORMATION

BKS FDF HWY LEA

Route Length 100.0m 75.0m 70.0m 50.0m
Road Width 7.92m 6.09m 5.20m 8.00m

rather than solely on a far-away point such as the VP.

C. Environment and Robot Condition Testing

We systematically test the autonomous navigation system
on different days, at different times of the day, and in four
selected outdoor sites on the USC campus: Bookstore (BKS),
Frederick D. Fagg Park (FDF), Hellman Way (HWY), and
Leavey Library (LEA). These sites encompass different road
appearance characteristics that are explained in figure 7. In
addition, their respective route length and road width are
available in table II.

We first run the robot in an ideal condition: no crowd,
no shadows, and ideal speed 0.5m/s (equivalent to slow
walking). For an even lighting with no shadow, we run the
robot between 5 and 7pm where the sun is about to set,
whereas, to obtain shadow patterns, the robot is run in the
afternoon. For a faster speed, the robot is run at 1.0m/s,
which is very close to regular walking speed. We display
the average deviation from the road center in a series of
bar graphs in figure 10, with the different conditions labeled
appropriately.

The results between the sites for the ideal testing cases
are similar, between 0.12m and 0.29m, with an average of
0.21m lateral deviation error. The HWY site is slightly more
difficult because the roads are curved. However, we find that,
even on a curved road, the system can still utilize the straight
portions of the road boundaries to direct itself.

In addition, the system appears to be able to cope with
the crowded and shadow conditions, on average, measuring
0.37m and 0.32m, respectively. There are different types
of shadows, which are displayed in figure 7. One that is
without sharp straight edges such as the ones underneath
bushes (observe the second example of FDF site), while the
other has sharp edges, usually shadows of buildings or tree
trunks (first BKS and forth LEA example). The latter has

0.2

0.4

0.6

BKS LEA Total

Ideal Crowd Shadow Speed
E
rr

o
r

(m
)

FDF HWY

Fig. 10. Comparison of the navigation system performance under various
conditions. We measure the average deviation (in m) of the robot from the
road center and display the results of the different sites separately. Within
the sites we separate the conditions to ideal, shadow, crowded and speed.

the potential to affect the road recognition system if it is
not pointing to the VP. However, these shadows would not
interfere too severely if the true road lines are also detected.

As for the crowd comparison, the results are close to the
ideal condition, except for the LEA site. In the other sites,
such as the BKS (second BKS example in figure 7) there are
many road cues spread throughout the image. This makes it
almost impossible for even the densest crowd to cover all the
lines. However, in LEA there are only two wide boundary
lines, spaced 8m apart. If one of them is crowded such as the
third LEA example image, the robot has to swerve toward
the visible boundary.

The difference in speed also shows a notable difference in
error, 0.20m farther than in the ideal condition. In the higher
speed of 1m/s, the robot visibly oscillates and strays away
from the center of the road, accumulating a large amount of
error. This is not what is observed with the regular speed
of 0.5m/s, where the robot smoothly corrects its heading.
Despite the jagged trajectory with the higher speed, the
robot still maintains its heading all the way to the end of
the route. Because of this encouraging result, we believe
that the visual road recognition system can still perform
just as well at higher speeds, with improved implementation
of forward projection that better incorporates instantaneous
robot odometry.

IV. DISCUSSION AND CONCLUSIONS

In this paper we present a novel approach to monocular
vision road recognition by using road line segments rep-
resentation which do not assume rigid road shape such as
a triangular template. This flexibility is highlighted in the
testing section where the system is able to cope various chal-
lenges such as roads with complex shapes, surface textures,
or markings, shadows, and crowded situations.

In addition, when we then fuse the visual road recog-
nition system with odometry information within an au-
tonomous navigation framework. The full system is able
to autonomously drive the robot over more than 5 km of
different routes on a busy college campus. We believe that
our study is to date the largest-scale successful demonstration
of an autonomous road finding algorithm in a complex

campus environment.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support by the
National Science Foundation (grant number BCS-0827764),
the Army Research Office (W911NF-11-1-0046), and U.S.
Army (W81XWH-10-2-0076). The authors affirm that the
views expressed herein are solely their own, and do not
represent the views of the United States government or any
agency thereof.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office envi-
ronment,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), May 2010, pp. 300 – 307.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, G. H. M. Halpenny, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerka, E.Jensen,
P. Alessandrini, G. Bradski, B. Davie, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney., “Stanley, the robot that won the darpa grand
challenge,”Journal Field Robotics, vol. 23, no. 9, pp. 661–692, 2005.

[3] S. Thrun, “Google’s driverless car,” 2011, ”Talk was viewed at
http://www.ted.com/talks/sebastianthrun googles driverlesscar.html
on September 1, 2012”.

[4] “Static calibration and analysis of the velodyne hdl-64e s2 for high
accuracy mobile scanning,”Remote Sensing, vol. 2, no. 6, pp. 1610–
1624, 2010.

[5] Z. Chen and S. Birhfield, “Quantitative vision-based mobile robot
navigation,” inProc. IEEE International Conference on Robotics and
Automation (ICRA), May 2006, pp. 2686 – 2692.

[6] C.-K. Chang, C. Siagian, and L. Itti, “Mobile robot vision navigation &
localization using gist and saliency,” inProc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2010.

[7] A. Cherubini, F. Spindler, and F. Chaumette, “A new tentacles-based
technique for avoiding obstacles during visual navigation,” in Proc.
IEEE International Conference on Robotics and Automation (ICRA),
2012.

[8] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for fast,
robust trail-following,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), October 2009, pp. 3505 –
3512.

[9] T. Kuhnl, F. Kummert, and J. Fritsch, “Monocular road segmentation
using slow feature analysis,” inIEEE Intelligent Vehicles Symposium
(IV), june 2011, pp. 800 – 806.

[10] P. Santana, N. Alves, L. Correia, and J. Barata, “Swarm-based visual
saliency for trail detection,” inProc. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), oct. 2010, pp. 759
–765.

[11] H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a
single image,”IEEE Transactions on Image Processing, vol. 19, no. 8,
pp. 2211 – 2220, August 2010.

[12] O. Miksik, “Rapid vanishing point estimation for general road de-
tection,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), May 2012.

[13] C.-K. Chang, C. Siagian, and L. Itti, “Mobile robot monocular vision
navigation based on road region and boundary estimation,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2012, bb, pp. 1043–1050.

[14] C. Siagian, C.-K. Chang, R. Voorhies, and L. Itti, “Beobot 2.0: Cluster
architecture for mobile robotics,”Journal of Field Robotics, vol. 28,
no. 2, pp. 278–302, March/April 2011.

[15] G. Bradski, “Open source computer vision library,” 2001. [Online].
Available: http://opencv.willowgarage.com

[16] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” inProc. IEEE International Conference on Robotics and
Automation (ICRA), 1993, pp. 802–807.

[17] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,”IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23 – 33, 1997.

