
Albert-Ludwigs-Universität Freiburg, Institut für Informatik
Dr. Gian Diego Tipaldi, Prof. Wolfram Burgard
Lecture: Robot Mapping
Winter term 2015

Sheet 1
Topics: Octave

Submission deadline: Oct. 26, 2015
Submit to: robotmappingtutors@informatik.uni-freiburg.de

General Notice

The exercises should be solved in groups of two students. In general, assignments
will be published on Monday and should be submitted until the deadline. The source
code of programming exercises should be submitted via email.

We will be using Octave for the programming exercises. Octave is a command line
program for solving numerical computations. Octave is mostly compatible with
MATLAB and is freely available from www.octave.org. It is available for Linux,
Mac OS, and Windows. Install Octave on your system in order to solve the pro-
gramming assignments. A quick guide to Octave is given in the Octave cheat sheet
which is available on the website of this lecture.

Exercise 1: Getting familiar with Octave

The purpose of this exercise is to familiarize yourself with Octave and learn ba-
sic commands and operations that you will need when solving the programming
exercises throughout this course.

Go through the provided Octave cheat sheet and try out the different commands.
Ask for help by email whenever you need it. As pointed out in the sheet, a very
useful Octave command is help. Use it to get information about the correct way to
call any Octave function.

Exercise 2: Implementing an odometry model

Implement an Octave function to compute the pose of a robot based on given odom-
etry commands and its previous pose. Do not consider the motion noise here.

For this exercise, we provide you with a small Octave framework for reading log files
and to visualize results. To use it, call the main.m script. This starts the main loop
that computes the pose of the robot at each time step and plots it in the map. Inside
the loop, the function motion command is called to compute the pose of the robot.
Implement the missing parts in the file motion command.m to compute the pose xt

given xt−1 and the odometry command ut. These vectors are in the following form:

1

www.octave.org


xt =

 x
y
θ

 ut =

 δrot1
δtrans
δrot2

 ,

where δrot1 is the first rotation command, δtrans is the translation command, and
δrot2 is the second rotation command. The pose is represented by the 3× 1 vector x
in motion model.m. The odometry values can be accessed from the struct u using
u.r1, u.t, and u.r2 respectively.

Compute the new robot pose according to the following motion model:

xt = xt−1 + δtrans cos(θt−1 + δrot1)
yt = yt−1 + δtrans sin(θt−1 + δrot1)
θt = θt−1 + δrot1 + δrot2

Test your implementation by running the main.m script. The script will generate a
plot of the new robot pose at each time step and save an image of it in the plots

directory. While debugging, run the program only for a few steps by replacing
the for-loop in main.m by something along the lines of for t = 1:20. You can
generate an animation from the saved images using avconv (sudo apt-get install

libav-tools) or mencoder. With avconv you can use the following command to
generate the animation from inside the plots directory:

avconv -r 10 -b 500000 -i odom %03d.png odom.mp4

Exercise 3: Homogeneous transformations

A robot pose in a given frame is compactly represented as:

p =

 x
y
θ


Alternativley, homogeneous coordinates can be used. This simplifies transformations
as they are modeled in matrix form:

M =

(
R t

0 1

)
=

cos θ − sin θ x
sin θ cos θ y

0 0 1


(a) Implement two Octave funtions:

• v2t - takes as input the vector form of the robot pose and outputs the corre-
sponding homogeneous transformation

• t2v - takes as input an homogeneous transformation representing the robot
pose in the 2D space and outputs the corresponding compact vector

2



Test your implementation chaining four different transformations of your choice.

(b) Given two robot poses p1 = (x1, y1, θ1)
T and p2 = (x2, y2, θ2)

T , how do you get
the relative transformation from p1 to p2?

(c) A 2D point (that we will often call “landmark” or “point of interest”) in the
plane can be expressed by its x and y values. In order to get a 3 × 1 vector and
to be able to make multiplications with the 3 × 3 matrices representing the robot
poses, we need to express the landmarks in homogeneous coordinates, that in this
case means putting the scaling value to 1.

poi =

 x
y
1



Given a robot pose p1 and an < x, y > observation z of a landmark relative to p1.

xt =

 1
1
π/2

 z =

(
2
0

)
,

Compute the location of the landmark.

3


