Albert-Ludwigs-Universität Freiburg, Institut für Informatik Dr. Gian Diego Tipaldi, Prof. Wolfram Burgard Lecture: Robot Mapping Winter term 2015

Sheet 10

Topic: Graph-Based SLAM

Submission deadline: January 21 (Task 1), January 28 (Task 2) Submit to: robotmappingtutors@informatik.uni-freiburg.de

Exercise: Graph-Based SLAM

Implement a least-squares method to address SLAM in its graph-based formulation. To support this task, we provide a small *Octave* framework (see course website). The framework contains the following folders:

data contains several datasets, each gives the measurements of one SLAM problem

octave contains the Octave framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the directory octave by completing the stubs:

- 1. Implement the function in compute_global_error.m for computing the current error value for a graph with constraints.
 - Implement the function in linearize_pose_pose_constraint.m for computing the error and the Jacobian of a pose-pose constraint. Test your implementation with test_jacobian_pose_pose.
 - Implement the function in linearize_pose_landmark_constraint.m for computing the error and the Jacobian of a pose-landmark constraint. Test your implementation with test_jacobian_pose_landmark.
- 2. Implement the function in linearize_and_solve.m for constructing and solving the linear approximation.
 - Implement the update of the state vector and the stopping criterion in **lsSLAM.m**. A possible choice for the stopping criterion is $\|\Delta \mathbf{x}\|_{\infty} < \epsilon$, i.e., $\|\Delta \mathbf{x}\|_{\infty} = \max(|\Delta x_1|, \dots, |\Delta x_n|) < \epsilon$.

After implementing the missing parts, you can run the framework. To do that, change into the directory octave and launch *Octave*. To start the main loop, type **lsSLAM**. The script will produce a plot showing the positions of the robot and (if

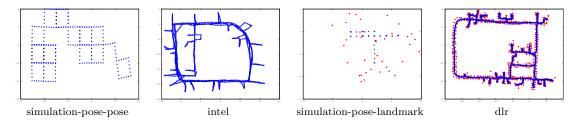


Figure 1: Result for each dataset.

available) the positions of the landmarks in each iteration. These plots will be saved in the plots directory.

Figure 1 depicts the result that you should obtain after convergence for each dataset. Additionally, the initial and the final error for each dataset should be approximately:

dataset	initial error	final error
simulation-pose-pose.dat	138862234	8269
intel.dat	1795139	360
simulation-pose-landmark.dat	3030	474
dlr.dat	369655336	56860

The state vector contains the following entities:

• pose of the robot: $\mathbf{x}_i = (x_i \ y_i \ \theta_i)^T$ Hint: You may use the function $v2t(\cdot)$ and $t2v(\cdot)$:

$$v2t(\mathbf{x}_i) = \begin{pmatrix} R_i & \mathbf{t}_i \\ \mathbf{0} & 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) & x_i \\ \sin(\theta_i) & \cos(\theta_i) & y_i \\ 0 & 0 & 1 \end{pmatrix} = X_i$$
$$t2v(X_i) = \mathbf{x}_i$$

• position of a landmark: $\mathbf{x}_l = (x_l \ y_l)^T$

We consider the following error functions:

• pose-pose constraint: $\mathbf{e}_{ij} = \mathrm{t2v}(Z_{ij}^{-1}(X_i^{-1}X_j))$, where $Z_{ij} = \mathrm{v2t}(\mathbf{z}_{ij})$ is the transformation matrix of the measurement $\mathbf{z}_{ij}^T = (\mathbf{t}_{ij}^T, \theta_{ij})$. Hint: For computing the Jacobian, write the error function with rotation

matrices and translation vectors:

$$\mathbf{e}_{ij} = \begin{pmatrix} R_{ij}^T (R_i^T (\mathbf{t}_j - \mathbf{t}_i) - \mathbf{t}_{ij}) \\ \theta_j - \theta_i - \theta_{ij} \end{pmatrix}$$

• pose-landmark constraint: $\mathbf{e}_{il} = R_i^T(\mathbf{x}_l - \mathbf{t}_i) - \mathbf{z}_{il}$