Robot Mapping

Extended Kalman Filter

Gian Diego Tipaldi, Wolfram Burgard

SLAM is a State Estimation
Problem

= Estimate the map and robot’s pose

= Bayes filter is one tool for state
estimation

» Prediction

bel(xy) = /p(:):t | ug, 1) bel(xi_1) dre_q

= Correction

bel(xs) =1 p(z | z¢) bel(wy)

Kalman Filter

= [t is a Bayes filter
» Estimator for the linear Gaussian case

= Optimal solution for linear models and
Gaussian distributions

Kalman Filter Distribution

= Everything is Gaussian

p(z) = det(2r%)~F exp (— 5(z —)75 (= —)

34.1% 34.1%

00 01 02 03 04

—-30 —-20 —-1lo M lo 20 30

Courtesy: K. Arras g4

Properties: Marginalization and
Conditioning

= Given (Z,
T =

Lb

) p(z) =N
= The marginals are Gaussians

p(za) =N play) =N

= as well as the conditionals
p(alxp) =N plEp | za) =N

Marginalization
= Given p(ﬂ?) — p(maa be) — N(,u, Z)

- _ [Ha o 2iaa 2ab
with #= (i) > = (S)
= The marginal distribution is

pla) = / p(a,23) dy = N1, S)

with U= g Z:Zaa

Conditioning
= Given p(ﬂf) — p(ajaa ij) — N(Ma E)

- _ [Ha o 2iaa 2ab
with #= (i) > = (S)
= The conditional distribution is

o p(xaaafb) L
p(an | xb) o p(xb) o N(:uv E)

with U= g + Zabzb_bl(b — lub)
Y = aa — ZasXhy Sta

Linear Model

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

Ty = Arxe_1 + Brus + €

Lt — C’ta:t -+ 575

Components of a Kalman Filter

A Matrix (n x n) that describes how the state
t evolves from ¢t — 1 to ¢ without controls or
noise.

Bt Matrix (n x () that describes how the control
u+ changes the state fromt —1 toz¢t.

(', Matrix (k x n) that describes how to map the
state z; to an observation z;.

€4 Random variables representing the process
and measurement noise that are assumed to

515 be independent and normally distributed
with covariance R, and (), respectively.

Linear Motion Model

= Motion under Gaussian noise leads to

p(y | ug, wp—1) =7

10

Linear Motion Model

= Motion under Gaussian noise leads to

] I

plxs | ug, xe_q) = det(2nRy) ™

1 _
exXp <—§(ﬂi‘t — Ay — Btut)TRt 1(9675 — Ay — Btut)

= R describes the noise of the motion

)

11

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(Zt | $t) =7

12

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z: |) = det(27Qy) 2

exp (—%(Zt — Cyx)" Qy (2 — Ctivt))

= (J; describes the measurement noise

13

Everything stays Gaussian

= Given an initial Gaussian belief, the
belief is always Gaussian

w(xt) — /p(xt | ug, xpq) bel(xi_1) dry_q

bel(xs) =1 p(z | z¢) bel(wy)

= Proof is non-trivial
(see Probabilistic Robotics, Sec. 3.2.4)

14

Kalman Filter Algorithm

Kalman_filter (u; 1,1, us, 2¢):

fe = A¢ -1 + Bt uy
Zt — At Zt—l A? —|— Rt

K, =%, CHCy 5 CF + Q)
pe = e + Ke(ze — Cy jir)

Zt — (I— Kt Ct) Zt

return fig, 2

15

1D Kalman Filter Example (1)

| prediction | measurement

correction

It's a weighted mean!

> = 16

1D Kalman Filter Example (2)

prediction

measurement

correction

Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = Ayxi—1 + Byuy + €
<t = CtCEt —+ 5,5

What if this is not the case?

18

Non-linear Dynamic Systems

= Most realistic problems (in robotics)

involve nonlinear functions

1;t/

|

\

It = Q(Utaﬂft—l) + € 2t = h(CCt) + 5t

19

Linearity Assumption Revisited

6| 6
piyi= My, ap+hb,a%e m— - 3K+ h
X Mean of piy) = Mean p
)
4
3
Y
1 - 1 +
0 05 1 1.5 0 0.5 1
6| l
P = NE% p, o7
d= hean of pix)
2 |
0

€6urtesy: Thrln, Burgard, Fox 2q

Non-Linear Function

Py
— Gaussian of py)

A Mean of piy)

-2

Non- Gau55|anl

U 0.2 0.4 0.6 UB

Y=g

— Function gi=)
= hean p

O o

0.5 1

Pl
g hdean p

+

€urtesy: Thrlin, Burgard, Fox 21

Non-Gaussian Distributions

» The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

22

Non-Gaussian Distributions

» The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!

23

EKF Linearization: First Order
Taylor Expansion

= Prediction:
9q(uy, fhs—
g(utyxt—l) gg(utvut—l) + g(at ot 1)
< Tt—1
_.q,
= Correction: \

h(ze) =~ h(fe) +

24

Reminder: Jacobian Matrix

= Jtis a non-square matrix m x n in general

= Given a vector-valued function

/ gi(x) \
g(x) _ 92?@
N\)
= The Jacobian matrix is defined as
/ 991 9g1 991 \
8%1 8332 e 8a:n
992 Og2 Og2

(;x _ 3%1 8?2 T 8?%

8g'rn agm agm /
ox1 Oxo T oxn,

25

Reminder: Jacobian Matrix

= Jt is the orientation of the tangent plane to
the vector-valued function at a given point

Courtesy: K. Arras

= Generalizes the gradient of a scalar valued
function

26

EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(us, thi—
glus, xe—1) ~ glug, pe—1) + g(at fe—1) (xp—1 — pe—1)
_.q,
= Correction: \

— ! . I
h(xy) ~ h(fiy) + Linear functions!

27

Linearity Assumption Revisited

6| 6
piyi= My, ap+hb,a%e m— - 3K+ h
X Mean of piy) = Mean p
)
4
3
Y
1 - 1 +
0 05 1 1.5 0 0.5 1
6| l
P = NE% p, o7
d= hean of pix)
2 |
0

€&6urtesy: Thrln, Burgard, Fox »g

Non-Linear Function

6 6
Ry — Function gi=)
— Gaussian of piy) = hean p
41 ® Mean of p(y) 4 O o
-
0 T 0f
-2 -2
4 4 + -
0 0204 06 0.8 0 0.5 1
8 ()
g hdean p
-4
2|
0 =

€6urtesy: Thrlin, Burgard, Fox »g

EKF Linearization (1)

6 6
P ‘ = Function g
— Gaussian of py) — Taylor approx.
4 || — EFE Gaussian 4qr g hean p
O sl

2 -

0 T o0t

_2 _2.

-4 e -4 + -

0 0.2 04 06 0.8 0 0.5 1
61 p()
= Mean p

2-
0 £ S

€G6urtesy: Thrln, Burgard, Fox 3q

EKF Linearization (2)

61y 6
Py — Function gix)
= aussian of piy = Taylor approx.
4 q — EFK Gaussian 4 = Meanp
QO oW
2| ‘; 2
i 5
0 T 0
-2 -2
-4 ' - 4 + '
0 0.5 1 0 0.5 1
4 L o ﬂﬁjan e
= Vi /\
0 L]

]

CSurtesy: Thrin, Burgard, Fox 31

EKF Linearization (3)

Py
= Gaussian of py)

— EFK Gaussian

¥=0i=)

= Function g
= Taylor approx.
= Mean

0 o

e
0 0.5
pi)
= tdean p
e

&Surtesy: Thrin, Burgard, Fox 37

Linearized Motion Model

» The linearized model leads to

1
2

p(ZCt ‘ Ut,ZCt_l) ~ det (2’7TR75)

1
exp (— 5 (l‘t — g(ut,ut_1) — Gy ($t—1 — Mt—l))T

B (w1 = glus, 1) = Go (w1 — 1))

\ -

linearized model

= R describes the noise of the motion

33

Linearized Observation Model
= The linearized model leads to

p(z | 7)) = det (27Q;) ™2

1

exp (-3 (2t — h(fie) — He (e — 1))"

Q7 (2 (Mt) Hy (x4 — ﬂtl))

linearized model

= (J; describes the measurement noise

34

Extended Kalman Filter

Algorithm
1: Extended_Kalman filter(u:_1,>: 1, us, 2¢):
2: e = g, fi—1
3: Zt — Gt Zt—l G%F -+ Rt
4. K,=%, HI (H, X H' + Q)" ' |Gt < Hy
3} pe = fir + K (2 —ﬁﬁét))

0: Zt — (I — Kt Ht) Zt
7 return pis, 2

KF vs. EKF

35

Extended Kalman Filter
Summary

» Extension of the Kalman filter
= One way to handle the non-linearities
= Performs local linearizations

= Works well in practice for moderate
non-linearities

= Large uncertainty leads to increased
approximation error error

36

Literature

Kalman Filter and EKF

= Thrun et al.: “Probabilistic Robotics”,
Chapter 3

= Schon and Lindsten: "Manipulating the
Multivariate Gaussian Density”

= Welch and Bishop: “"Kalman Filter
Tutorial”

= Tipaldi: "Notes on Univariate
Gaussians and 1D Kalman Filters”

37

Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
from courses of Wolfram Burgard, Dieter Fox, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
bonn.des8

