Robot Mapping

Sparse Extended Information Filter for SLAM

Gian Diego Tipaldi, Wolfram Burgard

Reminder: Parameterizations for the Gaussian Distribution

moments

$$\Sigma = \Omega^{-1}$$
$$\mu = \Omega^{-1} \xi$$

covariance matrix mean vector

canonical

$$\Omega = \Sigma^{-1}$$
$$\xi = \Sigma^{-1} \mu$$

information matrix information vector

Motivation

Gaussian estimate (map & pose) normalized covariance matrix normalized information matrix

Motivation

normalized information matrix

Most Features Have Only a Small Number of Strong Links

Courtesy: Thrun, Burgard, Fox 5

Information Matrix

- Information matrix can be interpreted as a graph of measurements/"links" between nodes (variables)
- Can be interpreted as a MRF
- Missing links indicate conditional independence of the random variables
- Ω_{ij} tells us the strength of a link
- Larger values for nearby features
- Most off-diagonal elements in the information are close to 0 (but $\neq 0$)

Create Sparsity

- Set" most links to zero/avoid fill-in
- Exploit sparseness of Ω in the computations

 sparse = finite number of non-zero off-diagonals, independent of the matrix size

before any observations

robot observes landmark 1

robot observes landmark 2

 Adds information between the robot's pose and the observed feature

before the robot's movement

after the robot's movement

effect of the robot's movement

- Weakens the links between the robot's pose and the landmarks
- Add links between landmarks

before sparsification

before sparsification

removal of the link between m_1 and x_{t+1}

effect of the sparsification

- Sparsification means "ignoring" links (assuming conditional independence)
- Here: links between the robot's pose and some of the features

Active and Passive Landmarks

Key element of SEIF SLAM to obtain an efficient algorithm

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Active vs. Passive Landmarks

Sparsification in Every Step

 SEIF SLAM conducts a sparsification steps in each iteration

Effect:

- The robot's pose is linked to the active landmarks only
- Landmarks have only links to nearby landmarks (landmarks that have been active at the same time)

Key Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Sparsification

- 1. Motion update
- 2. Measurement update
- 3. Update of the state estimate
- 4. Sparsification

The mean is needed to apply the motion update, for computing an expected measurement and for sparsification

$$\begin{aligned} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t &= \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t) \\ 2: \quad \xi_t,\Omega_t &= \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \\ 3: \quad \mu_t &= \mathbf{SEIF_update_state_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \\ 4: \quad \tilde{\xi}_t,\tilde{\Omega}_t &= \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{aligned}$$

Note: we maintain ξ_t, Ω_t, μ_t

$$\begin{aligned} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t &= \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t) \\ 2: \quad \xi_t,\Omega_t &= \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \\ 3: \quad \mu_t &= \mathbf{SEIF_update_state_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \\ 4: \quad \tilde{\xi}_t,\tilde{\Omega}_t &= \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{aligned}$$

The corrected mean μ_t is estimated after the measurement update of the canonical ξ_t, Ω_t parameters

$$\begin{array}{c} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ \hline 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t) \\ 2: & \bar{\xi}_t,\Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \\ 3: & \mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \\ 4: & \bar{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: & return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}$$

Matrix Inversion Lemma

Before we start, let us re-visit the matrix inversion lemma

 For any invertible quadratic matrices R and Q and any matrix P, the following holds:

$$(R + P Q P^{T})^{-1} =$$

$$R^{-1} - R^{-1} P (Q^{-1} + P^{T} R^{-1} P)^{-1} P^{T} R^{-1}$$

SEIF SLAM – Prediction Step

- Goal: Compute ξ
 _t, Ω
 _t, μ
 t from motion and the previous estimate ξ{t-1}, Ω_{t-1}, μ_{t-1}
- Efficiency by exploiting sparseness of the information matrix

Let us start from EKF SLAM...

$$\underbrace{\mathbf{EKF}_{-}\mathbf{SLAM}_{-}\mathbf{Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t):} \\
 2: \quad F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \end{pmatrix} \\
 3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\
 4: \quad G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x \\
 5: \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + \underbrace{F_x^T R_t^x F_x}_{R_t} \\
 \end{cases}$$

Let us start from EKF SLAM...

$$\begin{aligned}
\mathbf{EKF_SLAM_Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t): \\
2: \quad F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \mathbf{copy \ \& \ paste} \\
3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \mathbf{copy \ \& \ paste} \\
4: \quad G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \mathbf{copy \ \& \ paste} \\
5: \quad \bar{\Sigma}_t = G_t \ \Sigma_{t-1} \ G_t^T + \underbrace{F_x^T \ R_t^x \ F_x}_{R_t} \\
\end{aligned}$$

Let us start from EKF SLAM...

$$\begin{aligned} \mathbf{EKF_SLAM_Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t): \\ 2: \quad F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \mathbf{copy \ \& \ paste} \\ 3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \mathbf{copy \ \& \ paste} \\ 4: \quad G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x \\ 5: \quad \bar{\Sigma}_t = G_t \ \Sigma_{t-1} \ G_t^T + \underbrace{F_x^T \ R_t^x \ F_x}_{R_t} \\ \end{bmatrix} \end{aligned}$$

let's begin with computing the information matrix... 33

SEIF – Prediction Step (1/3)

Algorithm SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$): $2: \quad F_x = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \underbrace{0 & \cdots & 0} \\ 0 & 0 & 1 & \underbrace{0 & \cdots & 0} \\ 0 & \cdots & 0 \end{pmatrix}$ $3: \quad \delta = \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$ $4: \quad \Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$

Compute the Information Matrix

Computing the information matrix

$$\bar{\Omega}_t = \bar{\Sigma}_t^{-1}$$

$$= \left[G_t \ \Omega_{t-1}^{-1} \ G_t^T + R_t \right]^{-1}$$

$$= \left[\Phi_t^{-1} + R_t \right]^{-1}$$

• with the term Φ_t defined as

$$\Phi_t = \left[G_t \ \Omega_{t-1}^{-1} \ G_t^T \right]^{-1} \\ = \left[G_t^T \right]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

Compute the Information Matrix

We can expand the noise matrix R

 $\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\ = \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1}$
Apply the matrix inversion lemma

 $\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1}$ $= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1}$ $= \Phi_{t} - \Phi_{t} F_{x}^{T} (R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T})^{-1} F_{x} \Phi_{t}$ **3x3 matrix**

Apply the matrix inversion lemma

Apply the matrix inversion lemma

 $\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$ $= \left[\Phi_t^{-1} + F_x^T R_t^x F_x \right]^{-1}$ $= \Phi_t - \Phi_t F_r^T (R_t^{x-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t$ ↑ 3x3 matrix ↑ Zero except Zero except 3x3 block 3x3 block - Constant complexity if ${}_{\Phi_t}$ is sparse and "bounded"!

This can be written as

$$\begin{split} \bar{\Omega}_t &= \left[\Phi_t^{-1} + R_t\right]^{-1} \\ &= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1} \\ &= \Phi_t - \underbrace{\Phi_t F_x^T (R_t^{x-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t}_{\kappa_t} \\ &= \Phi_t - \kappa_t \end{split}$$

• Question: Can we compute Φ_t efficiently ($\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$)?

• Goal: constant time if Ω_{t-1} is sparse

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

= $\begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$
3x3 identity 2Nx2N identity

• Goal: constant time if Ω_{t-1} is sparse

$$G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$$
$$= \begin{pmatrix} \Delta + I_{3} & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} (\Delta + I_{3})^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

holds for all block matrices where the off-diagonal blocks are zero

• Goal: constant time if Ω_{t-1} is sparse

 $G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$ $= \left(\begin{array}{cc} \Delta + I_3 & 0\\ 0 & I_{2N} \end{array}\right)^{-1}$ $= \begin{pmatrix} (\Delta + I_3)^{-1} & 0\\ 0 & I_{2N} \end{pmatrix}$ $= I_{3+2N} + \begin{pmatrix} (\Delta + I_3)^{-1} - I_3 & 0 \\ \uparrow & 0 & 0 \end{pmatrix}$ Note: 3x3 matrix

• Goal: constant time if Ω_{t-1} is sparse

 $G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$ $= \left(\begin{array}{cc} \Delta + I_3 & 0\\ 0 & I_{2N} \end{array}\right)^{-1}$ $= \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$ $= I_{3+2N} + \begin{pmatrix} (\Delta + I_3)^{-1} - I_3 & 0 \\ 0 & 0 \end{pmatrix}$ $= I + F_x^T [(I + \Delta)^{-1} - I] F_x$ Ψ_t $= I + \Psi_{+}$

We have

 $G_t^{-1} = I + \Psi_t$ $[G_t^T]^{-1} = I + \Psi_t^T$

with

$$\Psi_t = F_x^T \left[(I + \Delta)^{-1} - I \right] F_x$$
3x3 matrix

Ψ_t is zero except of a 3x3 block
 G_t⁻¹ is an identity except of a 3x3 block

Given that:

- G_t⁻¹ and [G_t^T]⁻¹ are identity matrices except of a 3x3 block
- The information matrix is sparse
- This implies that

$$\Phi_t = [G_t^T]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

can be computed in constant time

Constant Time Computation of Φ_t

Given Ω_{t-1} is sparse, the constant time update can be seen by

$$\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$$

$$= (I + \Psi_t^T) \Omega_{t-1} (I + \Psi_t)$$

$$= \Omega_{t-1} + \underbrace{\Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t}_{\lambda_t}$$

$$= \Omega_{t-1} + \lambda_t$$

all elements zero except a constant number of entries

Prediction Step in Brief

- Compute Ψ_t
- Compute λ_t using Ψ_t
- Compute Φ_t using λ_t
- Compute κ_t using Φ_t
- Compute $\bar{\Omega}_t$ using Φ_t and κ_t

SEIF – Prediction Step (2/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

 $\begin{aligned} 2: \quad F_x &= \cdots \\ 3: \quad \delta &= \cdots \\ 4: \quad \Delta &= \cdots \\ 5: \quad \Psi_t &= F_x^T \left[(I + \Delta)^{-1} - I \right] F_x \\ 6: \quad \lambda_t &= \Psi_t^T \ \Omega_{t-1} + \Omega_{t-1} \ \Psi_t + \Psi_t^T \ \Omega_{t-1} \ \Psi_t \\ 7: \quad \Phi_t &= \Omega_{t-1} + \lambda_t \\ 8: \quad \kappa_t &= \Phi_t \ F_x^T (R_t^{-1} + F_x \ \Phi_t \ F_x^T)^{-1} \ F_x \ \Phi_t \\ 9: \quad \bar{\Omega}_t &= \Phi_t - \kappa_t \end{aligned}$

Information matrix is computed, now do the same for the information vector and the mean

Compute the Mean

The mean is computed as in the EKF

$$\bar{\mu}_t = \mu_{t-1} + F_x^T \,\delta$$

Reminder (from SEIF motion update)

2:
$$F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 \cdots \\ 0 & 0 & 1 & 0 & 0 \\ 2N \end{pmatrix}$$

3:
$$\delta = \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \omega_{t}\Delta t \end{pmatrix}$$

- We obtain the information vector by
- $= \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \, \delta_t \right)$

 $\bar{\xi}_t$

 $= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \xi_{t-1} + F_x^T \delta_t \right)$

- We obtain the information vector by
- $\bar{\xi}_t = \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \,\delta_t \right)$ $= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \,\xi_{t-1} + F_x^T \,\delta_t \right)$
- $= \bar{\Omega}_t \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_t \; F_x^T \; \delta_t$

- We obtain the information vector by
- $$\begin{split} \bar{\xi}_{t} \\ &= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t}) \\ &= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t}) \\ &= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t} \\ &= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t} \end{split}$$

We obtain the information vector by

 \overline{r}

$$\begin{aligned} \xi_t \\ &= \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \, \delta_t \right) \\ &= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \, \xi_{t-1} + F_x^T \, \delta_t \right) \\ &= \bar{\Omega}_t \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \\ &= \left(\bar{\Omega}_t \underbrace{-\Phi_t + \Phi_t}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0} \right) \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \\ &= \left(\underbrace{\bar{\Omega}_t - \Phi_t}_{=-\kappa_t} + \underbrace{\Phi_t - \Omega_{t-1}}_{=\lambda_t} \right) \underbrace{\Omega_{t-1}^{-1} \, \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \, \Omega_{t-1}^{-1}}_{=I} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \end{aligned}$$

We obtain the information vector by

 \overline{r}

$$\begin{split} \xi_{t} \\ &= \bar{\Omega}_{t} \left(\mu_{t-1} + F_{x}^{T} \, \delta_{t} \right) \\ &= \bar{\Omega}_{t} \left(\Omega_{t-1}^{-1} \, \xi_{t-1} + F_{x}^{T} \, \delta_{t} \right) \\ &= \bar{\Omega}_{t} \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_{t} \, F_{x}^{T} \, \delta_{t} \\ &= \left(\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0} \right) \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_{t} \, F_{x}^{T} \, \delta_{t} \\ &= \left(\underbrace{\bar{\Omega}_{t} - \Phi_{t}}_{=-\kappa_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=\lambda_{t}} \right) \underbrace{\Omega_{t-1}^{-1} \, \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \, \Omega_{t-1}^{-1}}_{=I} \, \xi_{t-1} + \bar{\Omega}_{t} \, F_{x}^{T} \, \delta_{t} \\ &= \xi_{t-1} + (\lambda_{t} - \kappa_{t}) \, \mu_{t-1} + \bar{\Omega}_{t} \, F_{x}^{T} \, \delta_{t} \end{split}$$

SEIF – Prediction Step (3/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

Four Steps of SEIF SLAM

SEIF – Measurement (1/2)

SEIF_measurement_update
$$(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)$$

1: $Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix}$
2: for all observed features $z_t^i = (r_t^i, \phi_t^i)^T$ do
3: $j = c_t^i$ (data association)
4: if landmark j never seen before
5: $\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$
6: endif
7: $\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$
8: $q = \delta^T \delta$
9: $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

identical to the EKF SLAM

SEIF – Measurement (2/2)

$$10: \quad H_{t}^{i} = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_{x} & -\sqrt{q}\delta_{y} & 0 & 0 \dots 0 & +\sqrt{q}\delta_{x} & \sqrt{q}\delta_{y} & 0 \dots 0 \\ \delta_{y} & -\delta_{x} & -q & 0 \dots 0 \\ 2j-2 & -\delta_{y} & +\delta_{x} & 0 \dots 0 \\ 2j-2 & -\delta_{y} & +\delta_{x} & 0 \dots 0 \\ 2N-2j \end{pmatrix}$$

$$11: \quad \text{endfor}$$

$$12: \quad \xi_{t} = \bar{\xi}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} [z_{t}^{i} - \hat{z}_{t}^{i} + H_{t}^{i} \mu_{t}]$$

$$13: \quad \Omega_{t} = \bar{\Omega}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} H_{t}^{i}$$

$$14: \quad \text{return } \xi_{t}, \Omega_{t}$$

Difference to EKF (but as in EIF):

$$\xi_{t} = \bar{\xi}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} [z_{t}^{i} - \hat{z}_{t}^{i} + H_{t}^{i} \mu_{t}]$$

$$\Omega_{t} = \bar{\Omega}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} H_{t}^{i}$$

Four Steps of SEIF SLAM

Recovering the Mean

The mean is needed for the

- linearized motion model (pose)
- linearized measurement model (pose and visible landmarks)
- sparsification step (pose and subset of the landmarks)

Recovering the Mean

In the motion update step, we can compute the predicted mean easily

SEIF_motion_update(
$$\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$$
):
2-10:....
11: $\underline{\mu}_t = \mu_{t-1} + F_x^T \delta$
12: return $\xi_t, \Omega_t, \overline{\mu}_t$

Recovering the Mean

- Computing the corrected mean, however, cannot be done as easy
- Computing the mean from the information vector is costly:

$$\mu = \Omega^{-1}\xi$$

 Thus, SEIF SLAM approximates the computation for the corrected mean

Approximation of the Mean

- Compute a few dimensions of the mean in an approximated way
- Idea: Treat that as an optimization problem and seek to find

$$\hat{\mu} = \operatorname{argmax}_{\mu} p(\mu)$$
$$= \operatorname{argmax}_{\mu} \exp\left(-\frac{1}{2}\mu^{T}\Omega\mu + \xi^{T}\mu\right)$$

 Seeks to find the value that maximize the probability density function

Approximation of the Mean

- Differentiate function
- Set first derivative to zero
- Solve equation(s)
- Iterate
- Can be done effectively given that only a few dimensions of µ are needed (robot's pose and active landmarks)

further details will follow...

Four Steps of SEIF SLAM

$$\begin{array}{ccc} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t):\\ 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\boldsymbol{\mu}_{0}\boldsymbol{0}) \\ 2: & \xi_t,\Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \ \mathbf{DONE}\\ 3: & \mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) & \mathbf{DONE}\\ 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t)\\ 5: & return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}$$

Sparsification

- In order to perform all previous computations efficiently, we assumed a sparse information matrix
- Sparsification step ensures that
- Question: what does sparsifying the information matrix mean?

Sparsification

- Question: what does sparsifying the information matrix mean?
- It means "ignoring" some direct links
- Assuming conditional independence

Sparsification in General

Replace the distribution

p(a, b, c)

- by an approximation \tilde{p} so that a and b are independent given c

$$\tilde{p}(a \mid b, c) = p(a \mid c)$$
$$\tilde{p}(b \mid a, c) = p(b \mid c)$$

Approximation by Assuming Conditional Independence

This leads to

$$p(a, b, c) = p(a \mid b, c) p(b \mid c) p(c)$$

$$\approx p(a \mid c) p(b \mid c) p(c)$$

$$= p(a \mid c) \frac{p(c)}{p(c)} p(b \mid c) p(c)$$

$$= \frac{p(a, c) p(b, c)}{p(c)}$$

approximation

Sparsification in SEIFs

- Goal: approximate Ω so that it is and stays sparse
- Realized by maintaining only links between the robot and a few landmarks
- This also limits the number of links between landmarks
Limit Robot-Landmark Links

 Consider a set of active landmarks during the updates

Active and Passive Landmarks

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Sparsification Considers Three Sets of Landmarks

- Active ones that stay active
- Active ones that become passive
- Passive ones

$$m = m^+ + m^0 + m^-$$

active active passive
to passive

- Remove links between robot's pose and active landmarks that become passive
- Equal to conditional independence given the other landmarks
- No change in the links of passive ones

• Sparsification is an approximation!

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = p(x_t, m^+, m^0, m^- \mid z_{1:t}, u_{1:t})$$

- Dependencies from z, u not shown:

 $p(x_t, m) = p(x_t, m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$ $\simeq \dots$

> Given the active landmarks, the passive landmarks do not matter for computing the robot's pose (so set to zero)

- Dependencies from z, u not shown:

 $p(x_t, m) = p(x_t, m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$ $\simeq p(x_t | m^+, m^- = 0) p(m^+, m^0, m^-)$

Sparsification: assume conditional independence of the robot's pose from the landmarks that become passive (given $m^+, m^- = 0$)

- Dependencies from z, u not shown:

$$p(x_t, m) = p(x_t, m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^-) p(m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$$

$$\simeq p(x_t \mid m^+, m^- = 0) p(m^+, m^0, m^-)$$

$$= \frac{p(x_t, m^+ \mid m^- = 0)}{p(m^+ \mid m^- = 0)} p(m^+, m^0, m^-)$$

$$= \tilde{p}(x_t, m)$$

Information Matrix Update

- Sparsifying the direct links between the robot's pose and m^0 results in

$$\begin{split} \tilde{p}(x_t, m \mid z_{1:t}, u_{1:t}) \\ \simeq \quad \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{N(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} \; p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t}) \end{split}$$
The sparsification replaces Ω, ξ by approximated values
Express $\tilde{\Omega}$ as a sum of three matrices
 $\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$

Sparsified Information Matrix

$$\tilde{p}(x_t, m \mid z_{1:t}, u_{1:t})$$

$$\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$$

- Conditioning Ω_t on $m^- = 0$ yields Ω_t^0
- Marginalizing m^0 from Ω_t^0 yields Ω_t^1
- Marginalizing x, m^0 from Ω_t^0 yields Ω_t^2
- Marginalizing x from Ω_t yields Ω_t^3
- Compute sparsified information matrix

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Information Vector Update

The information vector can be recovered directly by:

$$\begin{split} \tilde{\xi}_t &= \tilde{\Omega}_t \ \mu_t \\ &= (\Omega_t - \Omega_t + \tilde{\Omega}_t) \ \mu_t \\ &= \Omega_t \ \mu_t + (\tilde{\Omega}_t - \Omega_t) \ \mu_t \\ &= \xi_t + (\tilde{\Omega}_t - \Omega_t) \ \mu_t \end{split}$$

$$\begin{aligned} \mathbf{SEIF_sparsification}(\xi_t, \Omega_t, \mu_t): \\ 1: \quad define \ F_{m_0}, F_{x,m_0}, F_x \ as \ projection \ matrices \\ to \ m_0, \ \{x, m_0\}, \ and \ x, \ respectively \end{aligned}$$

$$\begin{aligned} 2: \quad \Omega_t^0 &= F_{x,m^+,m^0} \ F_{x,m^+,m^0}^T \ \Omega_t \ F_{x,m^+,m^0} \ F_{x,m^+,m^0}^T \ F_{x,m^+,m^0}^T \\ 3: \quad \tilde{\Omega}_t &= \Omega_t - \Omega_t^0 \ F_{m_0} \ (F_{m_0}^T \ \Omega_t^0 \ F_{m_0})^{-1} \ F_{m_0}^T \ \Omega_t^0 \\ &\quad + \Omega_t^0 \ F_{x,m_0} \ (F_{x,m_0}^T \ \Omega_t^0 \ F_{x,m_0})^{-1} \ F_{x,m_0}^T \ \Omega_t^0 \\ &\quad - \Omega_t \ F_x \ (F_x^T \ \Omega_t F_x)^{-1} \ F_x^T \ \Omega_t \end{aligned}$$

$$\begin{aligned} 4: \quad \tilde{\xi}_t &= \xi_t + (\tilde{\Omega}_t - \Omega_t) \ \mu_t \\ 5: \quad return \ \tilde{\xi}_t, \tilde{\Omega}_t \end{aligned}$$

Four Steps of SEIF SLAM

$$\begin{aligned} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t &= \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\mathbf{DONE}) \\ 2: \quad \xi_t,\Omega_t &= \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \quad \mathbf{DONE} \\ 3: \quad \mu_t &= \mathbf{SEIF_update_state_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \quad \mathbf{DONE} \\ 4: \quad \tilde{\xi}_t,\tilde{\Omega}_t &= \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \quad \mathbf{DONE} \\ 5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{aligned}$$

Effect of the Sparsification

Courtesy: Thrun, Burgard, Fox 85

SEIF SLAM vs. EKF SLAM

- Roughly constant time complexity vs. quadratic complexity of the EKF
- Linear memory complexity vs. quadratic complexity of the EKF
- SEIF SLAM is less accurate than EKF SLAM (sparsification, mean recovery)

SEIF & EKF: CPU Time

SEIF & EKF: Memory Usage

SEIF & EKF: Error Comparison

Influence of the Active Features

Influence of the Active Features

Summary on SEIF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects direct links by sparsification
- Mean computation is an approxmation
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Literature

Sparse Extended Information Filter

 Thrun et al.: "Probabilistic Robotics", Chapter 12.1-12.7

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Edwin Olson, Pratik Agarwal, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de