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Least Squares in General

= Approach for computing a solution for
an overdetermined system

= "More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems



Least Squares History

= Method developed by Carl
Friedrich Gauss in 1795
(he was 18 years old)

= First showcase: predicting
the future location of the
asteroid Ceres in 1801 O Courtesy:

Astronomische
Nachrichten, 1828




Problem

= Given a system described by a set of n
observation functions { f;(x) }i=1:n

= et
= X be the state vector
= Z; be a measurement of the state X
= Z;, = f;(X) be a function which maps X to a
predicted measurement Z;
= Given n noisy measurements zq-,, about
the state x

) Goal: Estimate the state X which bests
explains the measurements zq-,,



Graphical Explanation

fi(x) =12z, Z1
y Z' fo(x) = zo 2,

AN

fn(x) = zn Zn

state predicted real
(unknown) measurements| | measurements




Example

fi(x) =12, Z1
N % fo(x) = z5 Z>
~
fn(X> = Zn Zn
= X position of 3D features

= Z; coordinates of the 3D features projected
Oon camera images

= Estimate the most likely 3D position of the
features based on the image projections
(given the camera poses)



Error Function

= Error e; is typically the difference between
the predicted and actual measurement

e;(x) = z;— fi(x)

= We assume that the error has zero mean
and is normally distributed

= Gaussian error with information matrix €2;

= The squared error of a measurement
depends only on the state and is a scalar

€; (X) = € (X)Tﬂiei (X)



Goal: Find the Minimum

= Find the state x™ which minimizes the
error given all measurements

global error (scalar)

X" = argmin F(x)
X

dalrd min Z ei(X) «<— squared error terms (scalar)
o

argmin ) el (x)0;e;(x)
o T

error terms (vector)




Goal: Find the Minimum

= Find the state x™ which minimizes the
error given all measurements

x* = argmin) el (x)Q;e;(x)
X :
(

= A general solution is to derive the
global error function and find its nulls

= In general complex and no closed form
solution

m) Numerical approaches
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Assumption

= A “"good” initial guess is available

= The error functions are “smooth” in

the neighborhood of the (hopefully
global) minima

= Then, we can solve the problem by
iterative local linearizations
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Solve Via Iterative Local
Linearizations

= L inearize the error terms around the
current solution/initial guess

= Compute the first derivative of the
squared error function

= Set it to zero and solve linear system

= Obtain the new state (that is hopefully
closer to the minimum)

= J[terate
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Linearizing the Error Function

= Approximate the error functions
around an initial guess X via Taylor
expansion

€;
= Reminder: Jacobian

( 0f1(x) 9Of1(x) 0f1(x) \

ox ox T Oxn

Ofa(x) Ofa(x) O fa(x)

Jf(x) — (9:131 8:62 Oxn

Ofm(z) Ofm(z)  Ofm(z)
\ )

ox1 0xo T Ooxn
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Squared Error

= With the previous linearization, we
can fix X and carry out the
minimization in the increments Ax

= We replace the Taylor expansion in
the squared error terms:

ez(fc T AX) - ...




Squared Error

= With the previous linearization, we
can fix x and carry out the
minimization in the increments Ax

= We replace the Taylor expansion in
the squared error terms:

61(}2 -

- AX)

2

el (% + Ax)Qe;(X + Ax)
(e; + J;Ax) 1 Q;(e; + J;Ax)
e; Qje; +

e;-rﬂiJiAX -+ AXTJ;-FQ?;GZ' +
AXTJ;-FQZ-JZ-AX
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Squared Error (cont.)

= All summands are scalar so the
transposition has no effect

= By grouping similar terms, we obtain:

e; (X + Ax)
~ e;-rﬂz-ei +
el ), Ax + AxT I Qe +
AxTIT0,;J;Ax
ej Qe; +2e] 9,3, Ax + Ax' J] 9,1, Ax
Ci b’ H;
c; + Qb?AX + Ax'H;Ax
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Global Error

= The global error is the sum of the
squared errors terms corresponding to
the individual measurements

= Form a new expression which
approximates the global error in the
neighborhood of the current solution X

P

F(X + Ax) > (i + b] Ax 4+ AxTH; Ax)

= Y e +20) bhHax+ AxI' (O H)Ax
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Global Error (cont.)

F(f( + AX) = Z (Ci + b;AX -+ AXTHZ-Ax)

= Y +2()b]) Ax+ axT (3 H;) Ax

H,—/ N\ -~ - \ ~ /

— ¢+ 2blAx + AxTHAX

with
b = > e/ 9,
1

H = Y J'aJ,
1
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Quadratic Form

= We can write the global error terms as
a quadratic form in Ax

F(x4+ Ax) ~ c+2blAx+ AxTHAX

= We need to compute the derivative of
F(x+ Ax) w.r.t. Ax (given X)
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Deriving a Quadratic Form
= Assume a quadratic form

f(x) = x'Hx+ blx

» The first derivative is

of

= (H+H")x+b
ox

See: The Matrix Cookbook, Section 2.2.4
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Quadratic Form

= We can write the global error terms as
a quadratic form in Ax

F(x4+ Ax) ~ c+2blAx+ AxTHAX

= The derivative of the approximated
F(x+ Ax) w.r.t. Ax is then:

OF (X + Ax)
OAX

~ 2b 4+ 2HAX
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Minimizing the Quadratic Form

= Derivative of F(x + Ax)
OF(x + Ax)

OAX
= Setting it to zero leads to

0 = 2b+ 2HAXx
= Which leads to the linear system

HAx = —Db
= The solution for the increment Ax™ is

Ax* = —H 1p

~ 2b+ 2HAX
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Gauss-Newton Solution

Iterate the following steps:

= |inearize around X and compute for
each measurement

= Compute the terms for the linear
i i

= Solve the linear system
Ax* = —H 'b
= Updating state x + x + Ax™
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Example: Odometry Calibration

= Odometry measurements u;

= Eliminate systematic error through
calibration

= Assumption: Ground truth odometry
u; is available

= Ground truth by motion capture, scan-
matching, or a SLAM system
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Example: Odometry Calibration

= There is a function f;(x) which, given
some bias parameters X, returns a an
unbiased (corrected) odometry for the
reading u as follows

/ T11 *12 %13
u;, = f;(x) = | o1 xoo x23 |uy
r31 %32 33

= To obtain the correction function f(x),
we need to find the parameters x
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Odometry Calibration (cont.)

= The state vector is
T
X:(ﬂfll 12 I13 I21 I22 I23 I31 I32 3733)

= The error function is

11 T12 T13

k
e;(x) =u; — | zo1 oo w23 | U

r31 *32 X33
= Its derivative is:
_ Oe;(x) _

Uj,x Uiy UgH
Ix — Uj,x Uiy U0
Uj,x Uiy U0

7

J;

Does not depend on x, why? What are the consequences? | =) e is linear, no need to iterate!




Questions

= How do the parameters look like if the
odometry is perfect?

= How many measurements (at least)
are needed to find a solution for the
calibration problem?

= His symmetric. Why?

= How does the structure of the
measurement function affects the
structure of H?
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How to Efficiently Solve the
Linear System?

* Linear system HAx = —b

= Can be solved by matrix inversion
(in theory)

= In practice:
= Cholesky factorization
= QR decomposition

= [terative methods such as conjugate
gradients (for large systems)
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Cholesky Decomposition for
Solving a Linear System

= A symmetric and positive definite
= System to solve Ax = b

* Cholesky leads to A = LL! with L
being a lower triangular matrix

= Solve first
Ly = b
= an then
Lix = y
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Gauss-Newton Summary

Method to minimize a squared error:

= Start with an initial guess

» |Linearize the individual error functions
= This leads to a quadratic form

= One obtains a linear system by
settings its derivative to zero

= Solving the linear systems leads to a
state update

= Jterate
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Relation to Probabilistic State
Estimation

= So far, we minimized an error function

= How does this relate to state
estimation in the probabilistic sense?
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General State Estimation

= Bayes rule, independence and Markov
assumptions allow us to write

p(fBo:t | Zl:taulit)
= np(ro) || [p(xt | me—1,us) p(2¢ | 21)]
t
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Log Likelihood
= Written as the log likelihood, leads to

1ng(aj():t | Zl:taulzt)

= const. + log p(xo)
T Z log p(x¢ | Tr—1,ut) +logp(zt | xt)]
t
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Gaussian Assumption

= Assuming Gaussian distributions

1ng(aj():t ’ Zl:taulzt)

= const. + log p(xo)

>

N——
N

log p(z¢ | Tt—1,ut) +1ogp(ze | o)

N —— — N

- N N
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Log of a Gaussian

= Log likelihood of a Gaussian

log NV (, p1, X2)

1
= const. — §(x — ) He - p)
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Error Function as Exponent

= Log likelihood of a Gaussian

log N (, p, X2)
1
= const. — 5 (z — p)t Eg;l (x — p)
el (x) e(x)
S —

e(x)

= i{s up to a constant equivalent to the
error functions used before
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Log Likelihood with Error Terms

= Assuming Gaussian distributions

log P(fﬁozt \ Z1:t, Ul:t)

1 1

= const. — ep(2) — 5 zt: lew, () + €, (2)]
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Maximizing the Log Likelihood

= Assuming Gaussian distributions

log p(xo:t | #1:¢, U1:2)
1 1
= const. — ep(2) — 5 > e, () + e, (2)]

2
t

= Maximizing the log likelihood leads to

argmax log p(xo.+ | 21.¢, U1:¢)

= argmine,(x) + Z ey, () + e, ()]
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Minimizing the Squared Error
iIs Equivalent to Maximizing the
Log Likelihood of Independent

Gaussian Distributions

with individual error terms for the
motions, measurements, and prior:

argmax log p(zo.¢ | 21.¢, U1:¢)

= argmine,(x) + Z ey, () + e, ()

39



Summary
= Technique to minimize squared error
functions

= Gauss-Newton is an iterative approach
for non-linear problems

= Uses linearization (approximation!)

= Equivalent to maximizing the log
likelihood of independent Gaussians

= Popular method in a lot of disciplines
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Literature

Least Squares and Gauss-Newton

= Basically every textbook on numeric
calculus or optimization

= Wikipedia (for a brief summary)
Relation to Probability Theory

= Thrun et al.: "Probabilistic Robotics”,
Chapter 11.4
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—42
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