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Three Main SLAM Paradigms

Kalman Particle Graph -
filter filter based

least squares
approach to SLAM



Least Squares in General

A Approach for computing a solution for
an overdetermined system

A* More equations than

A Minimizes the sum of the squared
errors In the equations

A Standard approach to a large set of
problems

oday: Application to SLAM



Graph -Based SLAM

A Odometry measurements connect
poses of the robot while It is moving

A Measurements are uncertain

P Robot pose -==p Measurement
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Graph -Based SLAM

A Observing previously seen areas
generates measurements between
non -successive poses
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P Robot pose -==p Measurement



ldea of Graph  -Based SLAM

AUse a graph to represent the problem

A Every node inthe graph corresponds
to a pose of the robot during mapping

AEvery edge between two nodes
corresponds to a spatial measurement
between them

A Graph -Based SLAM: Build the graph
and find a node configuration that
minimize the measurement error



Graph -Based SLAM in a Nutshell

A Every node in the
graph corresponds
to a robot position
and a laser
measurement

A An edge between
two nodes
represents a spatial
measurement
between the nodes

KUKA Halle 22, courtesy of P. Pfaff
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Graph -Based SLAM

A Once we have the
graph, we determine
the most likely map
by correcting the
nodes

In a Nutshell




Graph -Based SLAM in a Nutshell

A Once we have the
graph, we determine
the most likely map
by correcting the
nodes
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Graph -Based SLAM in a Nutshell

A Once we have the
graph, we determine
the most likely map
by correcting the
nodes

| 1 ke this

A Then, we can render a
map based on the
known poses
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The Overall SLAM System

A Interplay of front -end and back -end

A Map helps data association by
reducing the search space

A Topic today: optimization

node positions
v |

Graph Graph
ég‘t"g . Construction Optimization
>
(Front -End) graph (Back - End)
(nodes & edges)

Itoday 12



The Graph

Alt consists of n nodes X = X1,
A Each X; is a 2D or 3D transformation

(the pose of the robot at time t;)
A A measurement/edge  exists between
the nodes x;a n ; | f
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Create an Edge | f é

v

A.the robot mXxyex;p3ron
A Edge corresponds to odometry

O—@
X \ Xi41

The edge represents the
odometry  measurement
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Create an Edge | f é

v

A..t he robot observes t

the environment from  ax; from X
O
X3 )?j

Measurement from X; Measurement from X;
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Create an Edge | f é

v

A..t he robot observes t

the environment from ax; from X
A Construct a  virtual measurement
about the position of  <X;2n from X;
@

X,LQ K‘j

Edge represents the position of X jseen
from X; based onthe observation
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Transformations

A Transformations can be expressed
using homogenous coordinates

A Odometry -Based edge
(X; ' Xi41)
A Observation -Based edge

—1
(Xi Xj)
How node | sees node |
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Homogenous Coordinates

Al

.C. are a system of coordinates used

IN projective geometry
A Projective geometry is an alternative

algebraic representation of geometric
objects and transformations

A Formulas involving H.C. are often
simpler than in the Cartesian world

A A single matrix can represent affine
transformations and projective
transformations
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Homogenous Coordinates

Al

.C. are a system of coordinates used

IN projective geometry
A Projective geometry is an alternative

algebraic representation of geometric
objects and transformations

A Formulas involving H.C. are often
simpler than in the Cartesian world

A A single matrix can represent
affine transformations and
projective  transformations
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Homogenous Coordinates

A N-dim space expressed in N+1 dim
A 4 dim. for modeling the 3D space
ATOHC: (z,y,2)" = (z,9,2,1)*

A Backwards:  (z,y,z,w)T — (5,2, )T

w w_w

AVector in HC: v = (z,y, z,w)’
A Translation:

A Rotation:

20



The Edge Information Matrices

A Observations are affected by noise

A Information matrix €, for each edge
to encode its uncertainty

AT he “ biQ;gtleermbre the edge
“matters”™ 1 n the opt.]I

Questions

A What do the information matrices look like
In case of scan -matching vs. odometry?

A What should these matrices look like when

moving in a long, featureless corridor?
21



Pose Graph

observation (zi5,9%;) —— edge
of X;fromXx;
e; ;i (X, X;)
Xj error

nodes
according to
the graph
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Pose Graph

observation (zi5,9%;) —— edge
of X;fromXx;

e; ;i (X, X;)

X
J error

nodes
according to
the graph

A _ * ___ : T
A Goal:  x" = argmin Zeijﬂijeij
ij
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Least Squares SLAM

A This error function looks suitable for
least squares error minimization

X

S

arg}znin E eg;(xi,xj)ﬂijeij(xi,xj)
1]
: T
Y
argmin Ek er (x)Qrer(x)
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Least Squares SLAM

A This error function looks suitable for
least squares error minimization

*

x* = argmin)_ el (x)Qep(x)
X
k

Question:
A What is the state vector?
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Least Squares SLAM

A This error function looks suitable for
least squares error minimization

*

x* = argmin)_ el (x)Qep(x)
X
k

Question:
A What is the state vector?

One block for each
xl = (Xl X2 e X ‘j/nodeofthegraph

A Specify the error function!
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The Error Function

A Error function for a single

measurement

;i (X, %) = t2v(Z_;zl(X;1Xj))

1

measurement

I

X; referenced w.r.t. x;

A Error as a function of the whole state vector

eij(x) = t2v(Z; (X 1X;))

A Error takes a value of zero if

Zij = (X; X))
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Gauss - Newton: The Overall
Error Minimization Procedure

A Define the error function

A Linearize the error function
A Compute its derivative

A Set the derivative to zero
A Solve the linear system

A Iterate this procedure until
convergence
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Linearizing the Error Function

A We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x AX) =~ eij(x) JZ]AX

8eij (X)

with JZ] — 3
X




Derivative of the Error Function

A Does one error
all state variables

term e;;(x)epend
?

on
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Derivative of the Error Function

ADoes one error term  e;;(x)end on
all state variables?

m) No,onlyon x; and X;
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Derivative of the Error Function

ADoes one error term  e;;(x)end on
all state variables?

m) No,onlyon x; and X;

A Is there any consequence on the
structure  of the Jacobian ?
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Derivative of the Error Function

ADoes one error term  e;;(x)end on
all state variables?
m) No,onlyon x; and X;

A Is there any consequence on the
structure  of the Jacobian ?

B Yes, it will be non -zero only in the
rows corresponding to X;and X;

oe;; (x) o 0 de;;(x;) oe;i(x;) 0
- — e

Jij = (0"'Aij"'Bij"'0)
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Jacobians and Sparsity

AError €;;(x)lepends only on the two
parameter blocks X; and X;

e;i(x) = e;;(x;,X;)

A The Jacobian will be zero everywhere

except in the columns of ax| X j

34



Consequences of the Sparsity

A We need to compute the coefficient
vector band matrix : H

bl = Zb ZeTQ Ji;
ZHM ZJTQ Ji;

A The sparse structure of  \J; jresult
In a sparse structure of H

A This structure reflects the adjacency
matrix of the graph

H
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lllustration of the Structure

_ 1T

N
—> > Non-zero only at x; and x;
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lllustration of the Structure

= JTQer

N
—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and x.
= 110Q,,3;; | ‘

—>
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lllustration of the Structure

JTQer

N
—> Non-zero only at x; and x;

Non-zero on the main
- diagonal at x; and x;
= J; Q J

l —

... and at
the blocks

iJ,Ji
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lllustration of the Structure

b=>3 by
ij
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Consequences of the Sparsity

A An edge contributes to the linear
system via b;and H,;
A The coefficient vector Is:
bi, = e/,
— egﬂij(O“'Aij“'Bij'“O)
— ( 0...e%Qiinj...eT.QijBij...O )

Alt is non -zero only at the indices
correspondingto  x;d X j
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Consequences of the Sparsity

A The coefficient matrix of an edge is:

H;; = 3,93

ij

(

\

\

A Non -zero only in the blocks relating

)

T

T

7

T

T

T

T

)

/

)
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Sparsity Summary

A An edge ij contributes only to the
Ait and the " block of b;;
Ato the blocksii, jj, ij and ji of Hij

A Resulting system is sparse

A System can be computed by summing
up the contribution of each edge

A Efficient solvers can be used
A Sparse Cholesky decomposition
A Conjugate gradients
A... many ot hers
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The Linear System

A Vector of the states increments:

Axl = (Axflr Axg AX%)
A Coefficient vector:
, sz(BT{ Bg BE};)
A System matrix:

(I—{ll H12 ... Hln\
H21 {22 ... g2n
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Building the Linear System

For each measurement:
A Compute error  e;; = t2v(Z; " (X; X))

A Compute the blocks of the Jacobian:
Oe(x;,x;) Oe(x;, %)
6’X7;

A Update the coefficient vector:

an

A Update the system matrix:




Algorithm

optimize(x):

while (lconverged)
(H, b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
x =X+ Ax

end

return x

45



Example on the

Blackboard

46



Trivial 1D Example @) @)

A Two nodes and one observation

x = (z122)1 =(00)

z1o = 1

QO = 2

el = =z1p0—(z2—21)=1-(0-0)=1
Jio = (1 -1)
bis = e12Q12J12=(2 —2)

2 =2

Hip, = J{29J12=<_2 5 )

AxX = —HI21512

BUT det(H) =7?7%7?



What Went Wrong?

A The observation specifies  a relative
measurement between the nodes

A Any poses for the nodes would be fine
as long a their relative coordinates fit

AOne node needs to be

4 )

constraint
H:(_22 _22)4-((1)8) that sets
% y dx,=0
Ax = —H “byo
Ax = (01T
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Fixing the Global Frame

A We saw that the matrix  h{H not full
rank (after adding the measurements)

A The global frame had not been fixed

A Fixing the global reference frame is
strongly related to the prior p(x0)

A A Gaussian estimate about  Xqults
In an additional measurement

AE.g., first pose in the origin:
e(xg) = t2v(Xg)
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Real World Examples

50



Fixinga Subset of Variables

A Assume that the value of certain variables
during the optimization is known a priori

A We may want to optimize all others and
keep these fixed

A How ?
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Fixinga Subset of Variables

A Assume that the value of certain variables

during the optimization is known a priori

A We may want to optimize all others and

A
A

Keep these fixed
How ?

f a variable I1s not optimized, it should
“‘di sappears” fr gystent he
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Fixing a

Subset of Variables

A Assume that the value of certain variables
during the optimization is known a priori

A We may want to optimize all others and

Keep these
A How ?

fixed

A If a variable is not optimized, it should
“‘di sappears” fr gystent he

A Construct t
A Suppress t

ne full system
ne rows and the columns

corresponc

Ing to the variables to fix
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Why Can We Simply Suppress
the Rows and Columns of the
Corresponding Variables?

p(enB) =N (][5 522 ) = a1 ([Ts ] [a a2 ])

MARGINALIZATION CONDITIONING
p(a) = [ p(a, B)dB p(a | B) = p(a, B)/p(B)
Cov. | K= Mg Bo= o+ ZapXgs(8 - pg)
FORM| o _ 5 ¥ = Saa — LasZ3i La
INFO.| M=Ta — NapAgsmps N = Mo — NapgB
FORMI AL — AaﬁA~ A = Age

Courtesy: R. Eustice 54



Uncertainty

A H represents the information matrix
given the linearization point

Alnverting H gives the (dense)
covariance matrix

A The diagonal blocks of the covariance
matrix represent the (absolute)
uncertainties of the corresponding
variables
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Relative Uncertainty

To determine the relative uncertainty
between X; and X;:

A Construct the full matrix H

A Suppress the rows and the columns of
X; (= do not optimize/fix this variable)

A Compute the block j,j of the inverse

A This block will contain the covariance
matrix of x; w.r.t . X;, which has been
fixed
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Examp

robot

ﬁ_'n’h-"
kreK(0))
N
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Conclusions

AThe back -end part of the SLAM
problem can be effectively solved
with Gauss -Newton

AThe H matrix is typically sparse

A This sparsity allows for efficiently
solving the linear system

A One of the state -of-the -art solutions
for computing maps
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