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Robot Mapping  

Least Squares Approach 
to SLAM  

Gian Diego Tipaldi, Wolfram Burgard  
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Three Main SLAM Paradigms  

Kalman 
filter  

Particle 
filter  

Graph -
based  

least squares  
approach to SLAM  
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Least Squares in General  

ÁApproach for computing a solution for 
an overdetermined system  

Á“More equations than unknowns” 

ÁMinimizes the sum of the squared 
errors  in the equations  

ÁStandard approach to a large set of 
problems  

 

Today: Application to SLAM  
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Robot pose Measurement 

Graph - Based SLAM  

ÁOdometry  measurements connect the 
poses of the robot while it is moving  

ÁMeasurements are uncertain  
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Graph - Based SLAM  

ÁObserving previously seen areas 
generates measurements between 
non -successive poses  

 

 

 

Robot pose Measurement 
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Idea of Graph - Based SLAM  

ÁUse a graph  to represent the problem  

ÁEvery node  in the graph corresponds 
to a pose of the robot during mapping  

ÁEvery edge  between two nodes 
corresponds to a spatial measurement  
between them  

ÁGraph - Based SLAM:  Build the graph 
and find a node configuration that 
minimize the measurement error  
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Graph - Based SLAM in a Nutshell  

ÁEvery node in the 
graph corresponds 
to a robot position 
and a laser 
measurement  

ÁAn edge between 
two nodes 
represents a spatial 
measurement 
between the nodes  

KUKA Halle 22, courtesy of P. Pfaff 
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Graph - Based SLAM in a Nutshell  

ÁEvery node in the 
graph corresponds 
to a robot position 
and a laser 
measurement  
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Graph - Based SLAM in a Nutshell  

ÁOnce we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes  
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Graph - Based SLAM in a Nutshell  

ÁOnce we have the 
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Graph - Based SLAM in a Nutshell  

ÁOnce we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes  

 … like this 

ÁThen, we can render a 
map based on the 
known poses  
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The Overall SLAM System  

ÁInterplay of front -end and back -end  

ÁMap helps data association by 
reducing the search space  

ÁTopic today: optimization  

Graph 
Construction  

(Front -End)  

Graph 
Optimization  

(Back -End)  

raw 
data  

graph  
(nodes & edges)  

node positions  

today  
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The Graph  

ÁIt consists of n nodes   

ÁEach     is a 2D or 3D transformation 
(the pose of the robot at time ti )  

ÁA measurement/edge exists between 
the nodes     and     if… 
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Create an Edge Ifé (1) 

Á…the robot moves from     to 

ÁEdge corresponds to odometry  

The edge represents the 
odometry  measurement  
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Create an Edge Ifé (2) 

Á…the robot observes the same part of 
the environment from     and from  

x i 

Measurement from     

x j  

Measurement from   
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Create an Edge Ifé (2) 

Á…the robot observes the same part of 
the environment from     and from  

ÁConstruct a virtual measurement  
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations  

ÁTransformations can be expressed 
using homogenous coordinates  

ÁOdometry -Based edge  
 

 

ÁObservation -Based edge  

How node i sees node j  



18  

Homogenous Coordinates  

ÁH.C. are a system of coordinates used 
in projective geometry  

ÁProjective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

ÁFormulas involving H.C. are often 
simpler than in the Cartesian world  

ÁA single matrix can represent affine 
transformations and projective 
transformations  
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Homogenous Coordinates  

ÁH.C. are a system of coordinates used 
in projective geometry  

ÁProjective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

ÁFormulas involving H.C. are often 
simpler than in the Cartesian world  

ÁA single matrix can represent 
affine transformations and 
projective transformations  
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Homogenous Coordinates  

ÁN-dim space expressed in N+1 dim  

Á4 dim. for modeling the 3D space  

ÁTo HC:  

ÁBackwards:  

ÁVector in HC:  

ÁTranslation:  

 

ÁRotation:  
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The Edge Information Matrices  

ÁObservations are affected by noise  

ÁInformation matrix      for each edge 
to encode its uncertainty  

ÁThe “bigger”     , the more the edge 
“matters” in the optimization  

 

Questions  

ÁWhat do the information matrices look like 
in case of scan -matching vs. odometry?  

ÁWhat should these matrices look like when 
moving in a long, featureless corridor?  
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Pose Graph  

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph  

ÁGoal:  

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Least Squares SLAM  

ÁThis error function looks suitable for 
least squares error minimization  
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Least Squares SLAM  

ÁThis error function looks suitable for 
least squares error minimization  

 

 

Question:  

ÁWhat is the state vector?  
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Least Squares SLAM  

ÁThis error function looks suitable for 
least squares error minimization  

 

 

Question:  

ÁWhat is the state vector?  
 

 

ÁSpecify the error function!  

One block for each  

node of the graph 
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The Error Function  

ÁError function for a single measurement  

 

 
 

 

ÁError as a function of the whole state vector  

 

 

ÁError takes a value of zero if  

 

xj referenced w.r.t. xi measurement 
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Gauss - Newton: The Overall 
Error Minimization Procedure  

ÁDefine the error function  

ÁLinearize the error function  

ÁCompute its derivative  

ÁSet the derivative to zero  

ÁSolve the linear system  

ÁIterate this procedure until 
convergence  
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Linearizing the Error Function  

ÁWe can approximate the error 
functions around an initial guess    
via Taylor expansion  

 

 

 

with  
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Derivative of the Error Function  

ÁDoes one error term           depend on 
all state variables ? 
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       No, only on     and   
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Derivative of the Error Function  

ÁDoes one error term           depend on 
all state variables?  

       No, only on     and   

ÁIs there any consequence on the 
structure  of the Jacobian ? 
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Derivative of the Error Function  

ÁDoes one error term           depend on 
all state variables?  

       No, only on     and   

ÁIs there any consequence on the 
structure  of the Jacobian ? 

 Yes, it will be non -zero only in the   
 rows corresponding to     and  
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Jacobians and Sparsity  

ÁError           depends only on the two 
parameter blocks     and  

 
 

ÁThe Jacobian will be zero everywhere 
except in the columns of     and  
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Consequences of the Sparsity  

ÁWe need to compute the coefficient 
vector    and matrix    :  

 

 

 
ÁThe sparse structure of      will result 

in a sparse structure of   

ÁThis structure reflects the adjacency 
matrix of the graph  



36  

Illustration of the Structure  

Non-zero only at xi and xj 
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Illustration of the Structure  

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure  

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure  

+ + é + 

+ + é + 
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Consequences of the Sparsity  

ÁAn edge contributes to the linear 
system via      and   

ÁThe coefficient vector is:  

 

 

 

 

ÁIt is non -zero only at the indices 
corresponding to     and  
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Consequences of the Sparsity  

ÁThe coefficient matrix of an edge is:  

 

 

 

 

 

 

 

ÁNon -zero only in the blocks relating i,j   
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Sparsity Summary  

ÁAn edge ij  contributes only to the  

Áith  and the j th  block of   

Áto the blocks ii, jj , ij  and ji  of   

ÁResulting system is sparse  

ÁSystem can be computed by summing 
up the contribution of each edge  

ÁEfficient solvers can be used  

ÁSparse Cholesky decomposition  

ÁConjugate gradients  

Á… many others 
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The Linear System  

ÁVector of the states increments:  

 

ÁCoefficient vector:  

 

ÁSystem matrix:  
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Building the Linear System  

For each measurement:  

ÁCompute error  

ÁCompute the blocks of the Jacobian:  

 
ÁUpdate the coefficient vector:  

 

ÁUpdate the system matrix:  
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Algorithm  
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Example on the Blackboard  
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Trivial 1D Example  

ÁTwo nodes and one observation  

BUT                    ???  
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What Went Wrong?  

ÁThe observation specifies a relative 
measurement  between the nodes  

ÁAny poses for the nodes would be fine  
as long a their relative coordinates fit  

ÁOne node needs to be ñfixedò 

constraint  
that sets  

d x 1=0  
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Fixing the Global Frame  

ÁWe saw that the matrix     has not full 
rank (after adding the measurements)  

ÁThe global frame had not been fixed  

ÁFixing the global reference frame is 
strongly related to the prior  

ÁA Gaussian estimate about      results 
in an additional measurement  

ÁE.g., first pose in the origin:  
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Real World Examples  
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Fixing a Subset of Variables  

ÁAssume that the value of certain variables 
during the optimization is known a priori  

ÁWe may want to optimize all others and 
keep these fixed  

ÁHow ? 



52  

Fixing a Subset of Variables  

ÁAssume that the value of certain variables 
during the optimization is known a priori  

ÁWe may want to optimize all others and 
keep these fixed  

ÁHow ? 

ÁIf a variable is not optimized, it should 
“disappears” from the linear system  
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Fixing a Subset of Variables  

ÁAssume that the value of certain variables 
during the optimization is known a priori  

ÁWe may want to optimize all others and 
keep these fixed  

ÁHow ? 

ÁIf a variable is not optimized, it should 
“disappears” from the linear system  

ÁConstruct the full system  

ÁSuppress the rows and the columns 
corresponding to the variables to fix  
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Why Can We Simply Suppress 
the Rows and Columns of the 
Corresponding Variables?  

Courtesy: R. Eustice  
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Uncertainty  

Á    represents the information matrix 
given the linearization point  

ÁInverting     gives the (dense) 
covariance matrix  

ÁThe diagonal blocks of the covariance 
matrix represent the (absolute) 
uncertainties of the corresponding 
variables  
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Relative Uncertainty  

To determine the relative uncertainty 
between     and    :  

ÁConstruct the full matrix  

ÁSuppress the rows and the columns of   
    (= do not optimize/fix this variable)  

ÁCompute the block j,j  of the inverse  

ÁThis block will contain the covariance 
matrix of     w.r.t .    , which has been 
fixed  
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Example  

robot  
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Conclusions  

ÁThe back -end part of the SLAM 
problem can be effectively solved  
with Gauss -Newton  

ÁThe     matrix is typically sparse  

ÁThis sparsity allows for efficiently 
solving the linear system  

ÁOne of the state -of - the -art solutions  
for computing maps  
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