Robot Mapping

Graph-Based SLAM with Landmarks

Gian Diego Tipaldi, Wolfram Burgard

Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial measurement between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the measurement error

The Graph

So far:

- Vertices for robot poses (x, y, θ)
- Edges for virtual measurements (transformations) between poses

Topic today:

- How to deal with landmarks

Landmark-Based SLAM

Real Landmark Map Example

Image courtesy: E. Nebot

The Graph with Landmarks

The Graph with Landmarks

- Nodes can represent:
- Robot poses
- Landmark locations
- Edges can represent:
- Landmark measurements
- Odometry measurements
- The optimization solves for landmark locations and robot poses

2D Landmarks

- Landmark is a (x, y)-point in the world - Relative observation in (x, y)

Landmarks Observation

- Expected observation (x-y sensor)

$$
\widehat{\mathbf{z}}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{R}_{i}^{T}\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)
$$

robot landmark robot translation

Landmarks Observation

- Expected observation (x-y sensor)

$$
\widehat{\mathbf{z}}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{R}_{i}^{T}\left(\mathbf{x}_{j}-\mathbf{t}_{\uparrow}\right)
$$ robot landmark robot translation

- Error function

$$
\begin{aligned}
\mathbf{e}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\widehat{\mathbf{z}}_{i j}-\mathbf{z}_{i j} \\
& =\mathbf{R}_{i}^{T}\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)-\mathbf{z}_{i j}
\end{aligned}
$$

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing towards the landmark
- Observation function

$$
\begin{array}{ccc}
\widehat{\mathbf{z}}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)= & \operatorname{atan} \frac{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{y}}{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{x}}-\theta_{i} \\
\uparrow \uparrow & \uparrow & \uparrow \\
\text { robot landmark } & \begin{array}{c}
\text { robot-landmark } \\
\text { angle }
\end{array} & \begin{array}{c}
\text { robot } \\
\text { orientation }
\end{array}
\end{array}
$$

Bearing Only Observations

- Observation function

$$
\begin{array}{cc}
\widehat{\mathbf{z}}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\uparrow \uparrow \uparrow & \operatorname{atan} \frac{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{y}}{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{x}}-\theta_{i} \\
\text { robot landmark } & \begin{array}{c}
\text { robot-landmark } \\
\text { angle }
\end{array} \\
\begin{array}{c}
\text { robot } \\
\text { orientation }
\end{array}
\end{array}
$$

- Error function

$$
\mathbf{e}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\quad \operatorname{atan} \frac{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{y}}{\left(\mathbf{x}_{j}-\mathbf{t}_{i}\right)_{x}}-\theta_{i}-\mathbf{z}_{j}
$$

The Rank of the Matrix H

- What is the rank of $\mathrm{H}_{i j}$ for a 2D landmark-pose constraint?

The Rank of the Matrix H

- What is the rank of $\mathrm{H}_{i j}$ for a 2D landmark-pose constraint?
- The blocks of $\mathrm{J}_{i j}$ are a 2×3 matrices
- $\mathbf{H}_{i j}$ cannot have more than rank 2

$$
\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)
$$

The Rank of the Matrix H

- What is the rank of $\mathrm{H}_{i j}$ for a 2D landmark-pose constraint?
- The blocks of $\mathbf{J}_{i j}$ are a 2×3 matrices
- $\mathbf{H}_{i j}$ cannot have more than rank 2 $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$
- What is the rank of $\mathbf{H}_{i j}$ for a bearing-only constraint?

The Rank of the Matrix H

- What is the rank of $\mathrm{H}_{i j}$ for a 2D landmark-pose constraint?
- The blocks of $\mathbf{J}_{i j}$ are a 2×3 matrices
- $\mathbf{H}_{i j}$ cannot have more than rank 2 $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$
- What is the rank of $\mathbf{H}_{i j}$ for a bearing-only constraint?
- The blocks of $\mathbf{J}_{i j}$ are a 1×3 matrices - $\mathbf{H}_{i j}$ has rank 1

Where is the Robot?

- Robot observes one landmark (x, y)
- Where can the robot be relative to the landmark?

The robot can be somewhere on a circle around the landmark

It is a 1D solution space (constrained by the distance and the robot's orientation)

Where is the Robot?

- Robot observes one landmark (bearing-only)
- Where can the robot be relative to the landmark?

The robot can be anywhere in the $x-y$ plane

It is a 2D solution space (constrained by the robot's orientation)

Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of \mathbf{H} is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Questions

- The rank of \mathbf{H} is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank
- Questions:
- How many 2D landmark observations are needed to resolve for a robot pose?
- How many bearing-only observations are needed to resolve for a robot pose?

Under-Determined Systems

- No guarantee for a full rank system
- Landmarks may be observed only once
- Robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to \mathbf{H}
- Instead of solving $\mathbf{H} \Delta \mathrm{x}=-\mathrm{b}$, we solve

$$
(\mathbf{H}+\lambda \mathbf{I}) \Delta \mathbf{x}=-\mathbf{b}
$$

What is the effect of that?
$(H+\lambda I) \Delta x=-b$

- Damping factor for \mathbf{H}
- $(\mathrm{H}+\lambda \mathbf{I}) \Delta \mathrm{x}=-\mathrm{b}$
- The damping factor $\lambda \mathbf{I}$ makes the system positive definite
- Weighted sum of Gauss Newton and Steepest Descent

Simplified Levenberg Marquardt

- Damping to regulate the convergence using backup/restore actions

```
\(\mathbf{x : ~ t h e ~ i n i t i a l ~ g u e s s ~}\)
while (! converged)
    \(\lambda=\lambda_{\text {init }}\)
    <H,b> = buildLinearSystem(x);
    \(\mathrm{E}=\operatorname{error}(\mathbf{x})\)
    \(\mathbf{x}_{\text {old }}=\mathbf{x}\);
    \(\Delta \mathbf{x}=\) solveSparse ( \((\mathbf{H}+\lambda \mathbf{I}) \Delta \mathbf{x}=-\mathbf{b})\);
    \(\mathbf{x}+=\Delta \mathbf{x}\);
    If (E < error (x)) \{
        \(\mathbf{x}=\mathbf{x}_{\text {old }}\);
        \(\lambda\) * \(=2\);
\} else \{ \(\lambda /=2 ;\) \}
```


Bundle Adjustment

- 3D reconstruction based on images taken at different viewpoints
- Minimizes the reprojection error
- Often uses Levenberg-Marquardt
- Developed in photogrammetry during the 1950's

Summary

- Graph-Based SLAM for landmarks
- The rank of \mathbf{H} matters
- Levenberg-Marquardt for optimization

Literature

Bundle Adjustment:

- Triggs et al. "Bundle Adjustment - A Modern Synthesis"

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_\&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.uni-

