Robot Mapping

Graph-Based SLAM with Landmarks

Gian Diego Tipaldi, Wolfram Burgard

Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial measurement between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the measurement error

The Graph

So far:

- Vertices for robot poses (x, y, θ)
- Edges for virtual measurements (transformations) between poses

Topic today:

How to deal with landmarks

Landmark-Based SLAM

4

Real Landmark Map Example

Image courtesy: E. Nebot

The Graph with Landmarks

The Graph with Landmarks

- Nodes can represent:
 - Robot poses
 - Landmark locations
- Edges can represent:
 - Landmark measurements
 - Odometry measurements
- The optimization solves for landmark locations and robot poses

2D Landmarks

- Landmark is a(x, y)-point in the world
- Relative observation in (x, y)

Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
robot landmark robot translation

Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
robot landmark robot translation

• Error function $\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \hat{\mathbf{z}}_{ij} - \mathbf{z}_{ij}$ $= \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i) - \mathbf{z}_{ij}$

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing towards the landmark
- Observation function

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan}_{\frac{(\mathbf{x}_j - \mathbf{t}_i)_y}{(\mathbf{x}_j - \mathbf{t}_i)_x}}^{(\mathbf{x}_j - \mathbf{t}_i)_y} - \theta_i$$
robot landmark robot-landmark robot orientation

Bearing Only Observations

Observation function

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan}_{\substack{(\mathbf{x}_j - \mathbf{t}_i)_y \\ \uparrow \uparrow}}^{(\mathbf{x}_i, \mathbf{x}_j)} = \operatorname{atan}_{\substack{(\mathbf{x}_j - \mathbf{t}_i)_x \\ \uparrow}}^{(\mathbf{x}_j - \mathbf{t}_i)_y} - \theta_i$$
robot landmark robot-landmark robot orientation

• Error function

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan} \frac{(\mathbf{x}_j - \mathbf{t}_i)_y}{(\mathbf{x}_j - \mathbf{t}_i)_x} - \theta_i - \mathbf{z}_j$$

What is the rank of H_{ij} for a 2D landmark-pose constraint?

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2 rank $(A^T A)$ = rank (A^T) = rank(A)

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2 rank $(A^T A)$ = rank (A^T) = rank(A)
- What is the rank of H_{ij} for a bearing-only constraint?

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - \mathbf{H}_{ij} cannot have more than rank 2 rank $(A^T A)$ = rank (A^T) = rank(A)
- What is the rank of H_{ij} for a bearing-only constraint?
 - The blocks of J_{ij} are a 1x3 matrices
 - ${\scriptstyle \bullet} \, {\rm H}_{ij}\,$ has rank 1

Where is the Robot?

- Robot observes one landmark (x, y)
- Where can the robot be relative to the landmark?

The robot can be somewhere on a circle around the landmark

It is a 1D solution space (constrained by the distance and the robot's orientation)

Where is the Robot?

- Robot observes one landmark (bearing-only)
- Where can the robot be relative to the landmark?

The robot can be anywhere in the x-y plane

> It is a 2D solution space (constrained by the robot's orientation)

Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of H is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Questions

- The rank of H is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Questions:

- How many 2D landmark observations are needed to resolve for a robot pose?
- How many bearing-only observations are needed to resolve for a robot pose?

Under-Determined Systems

- No guarantee for a full rank system
 - Landmarks may be observed only once
 - Robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to H
- Instead of solving $\mathrm{H}\Delta\mathrm{x} = -\mathrm{b}$, we solve

$(H + \lambda I)\Delta x = -b$

What is the effect of that?

$(H + \lambda I) \Delta x = -b$

- Damping factor for H
- $(H + \lambda I)\Delta x = -b$
- The damping factor \u03c6 I makes the system positive definite
- Weighted sum of Gauss Newton and Steepest Descent

Simplified Levenberg Marquardt

 Damping to regulate the convergence using backup/restore actions

x: the initial guess while (! converged) $\lambda = \lambda_{\text{init}}$ <H,b> = buildLinearSystem(x); $E = error(\mathbf{x})$ $\mathbf{x}_{old} = \mathbf{x};$ Δx = solveSparse((H + λ I) Δx = -b); $\mathbf{x} + = \Delta \mathbf{x};$ If $(E < error(\mathbf{x}))$ { $\mathbf{x} = \mathbf{x}_{old};$ $\lambda \times = 2;$ } else { λ /= 2; }

Bundle Adjustment

- 3D reconstruction based on images taken at different viewpoints
- Minimizes the reprojection error
- Often uses Levenberg-Marquardt
- Developed in photogrammetry during the 1950's

Summary

- Graph-Based SLAM for landmarks
- The rank of H matters
- Levenberg-Marquardt for optimization

Literature

Bundle Adjustment:

 Triggs et al. "Bundle Adjustment — A Modern Synthesis"

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de