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Robot Mapping  

Robust Least Squares for 
SLAM  

Gian Diego Tipaldi, Wolfram Burgard 

Courtesy for most images: Pratik Agarwal 
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Least Squares in General 

 Minimizes the sum of the squared 
errors  

 ML estimation in the Gaussian case 

 

Problems:  

 Sensitive to outliers 

 Only Gaussians (single modes)  
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Data Association Is Ambiguous 
And Not Always Perfect 

 Places that look identical 

 Similar rooms in the same building 

 Cluttered scenes 

 GPS multi pass (signal reflections) 

 … 
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Example 

3D world belief about the 
robot’s pose 

Courtesy: E. Olson 
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Such Situations Occur In Reality 

Courtesy: E. Olson, P. Agarwal 
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Committing To The Wrong Mode 
Can Lead to Mapping Failures  

Courtesy: E. Olson, P. Agarwal 
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Data Association Is Ambiguous 
And Not Always Perfect 

 Places that look identical 

 Similar rooms in the same building 

 Cluttered scenes 

 GPS multi pass (signal reflections) 

 … 
 

How to incorporate that  
into graph-based SLAM? 
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Mathematical Model 

 We can express a multi-modal belief 
by a sum of Gaussians 

Sum of Gaussians with k modes 
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Problem 

 During error minimization, we consider 
the negative log likelihood 

The log cannot be moved inside the sum! 
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Max-Mixture Approximation 

 Instead of computing the sum of 
Gaussians at   , compute the 
maximum of the Gaussians 
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Max-Mixture Approximation 

approximation error 
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Log Likelihood Of The Max-
Mixture Formulation 

 The log can be moved inside the max 
operator 

or: 
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Integration 

 With the max-mixture formulation, the 
log likelihood again results in local 
quadratic forms 

 Easy to integrate in the optimizer: 

1. Evaluate all k components  

2. Select the component with the 
maximum log likelihood 

3. Perform the optimization as before 
using only the max components  
(as a single Gaussian) 
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Performance (Gauss vs. MM) 

Courtesy: E. Olson, P. Agarwal 
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Runtime 

Courtesy: E. Olson, P. Agarwal 
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Max-Mixture and Outliers 

 MM formulation is useful for multi-
modal measurements  
(D.A. ambiguities) 

 MM is also a handy tool for outliers  
(D.A. failures) 

 Here, one mode represents the edge 
and a second model uses a flat 
Gaussian for the outlier hypothesis 
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Max-Mixture and Outliers 

Courtesy: E. Olson, P. Agarwal 
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Performance (1 outlier) 

Gauss-Newton MM Gauss-Newton 
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Performance (10 outliers) 

Gauss-Newton MM Gauss-Newton 
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Performance (100 outliers) 

Gauss-Newton MM Gauss-Newton 
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Standard Gaussian Least 
Squares 
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Dynamic Covariance Scaling 
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Scaling Parameter  
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Dynamic Covariance Scaling 
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Dynamic Covariance Scaling 

Both have  
squared error 
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Dynamic Covariance Scaling 

Original 
error 

Scaled 
error 



28 

Dynamic Covariance Scaling 

Linearization 
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Dynamic Covariance Scaling 
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Optimizing With Outliers  

 Assuming a Gaussian error in the 
measurement is not always realistic 

 Large errors are problematic  
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Robust M-Estimators 

 Assume non-normally-distributed 
noise 

 Intuitively: PDF with “heavy tails” 

       function used to define the PDF 

 

 

 Minimizing the neg. log likelihood  
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Different Rho Functions 

 Gaussian: 

 Absolute values (L1 norm): 

 Huber M-estimator 

 

 

 

 Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, …)  



33 

Huber 

 Mixture of a quadratic and a linear 
function 
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Different Rho Functions 

L1 norm Huber Tukey 

Cauchy Blake-Zisserman Corrupted G. 
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MM Cost Function For Outliers 
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Robust Estimation 

 Choice of the rho function depends on 
the problem at hand 

 Huber function is often used 

 MM for outlier handling is similar to a 
corrupted Gaussian 

 MM additionally supports multi-model 
measurements 

 Dynamic Covariance Scaling is a 
robust M-estimator 
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Conclusions 

 Sum of Gaussians cannot be used 
easily in the optimization framework 

 Max-Mixture formulation approximates 
the sum by the max operator  

 This allows for handling data 
association ambiguities and failures 

 Minimal performance overhead 

 Minimal code changes for integration 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 

Cyrill Stachniss, 2014 
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