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Abstract— Recently, there have been a number of variant Si- (i.e., information matrix) of feature-based SLAM exhibds
multaneous Localization and Mapping (SLAM) algorithms which  “natural” sparseness where many of the off-diagonal elésnen
have made substantial progress towards large-area scaldiy (i.e., graphical constraints) are relatively “weak”. Thisight

by parameterizing the SLAM posterior within the informatio n .
(canonicallinverse covariance) form. Of these, probablytte most has spawned the development of scalable SLAM algorithms

well-known and popular approach is the Sparse Extended In- founded upon pruning these weak constraints and exploiting

formation Filter (SEIF) by Thrun et al. While SEIFs have been the resulting sparse representation [4], [5], [7].

successfully implemented with a variety of challenging relaworld

data sets and have lead to new insights into scalable SLAM, ep

research questions remain regarding the approximate spaifica- For example, Paskin (Thin-Junction-Tree Filters) [5] and

tion pro_cedure and its effe(_:t on map error and consistency. _ Frese (Treemap Filters) [7] both employ tree-based approx-
In this paper, we examine the constant-time SEIF sparsifi- jyations to sparsify the canonical-form and have developed

cation procedure in depth and offer new insight into issues - . . . X

of consistency. In particular, we show that exaggerated map V€Y efficient mferenpe algo.rlthms for th|s. represenmt|o

inconsistency occurs within theglobal reference frame where One drawback to their techniques, though, is that their-tree

estimation is performed, but that empirical testing shows hat representations cannot explicity model cyclic enviromise

relative local map relationships are preserved. We then presenta nor has data association been addressed. Alternativedy, th

slightly modified version of their sparsification procedurewhich Sparse Extended Information Filter (SEIF) proposed by fihru

is shown to preserve sparsity while also generating both lat . .
and global map estimates comparable to those obtained by et al. [4], probably the most well known SLAM information

the non-sparsified SLAM filter; this modified approximation, = formulation, is based upon representing the SLAM posterior
however, is no longer constant-time. We demonstrate our fiidgs through the dual of the EKF (i.e., an Extended Information
by benchmark comparison of the modified and original SEIF Filter). SEIFs maintain a sparse information matrix repres
sparsification rule using simulation in the linear GaussianSLAM  atjon which has been demonstrated to be efficient, scalable
case and real-world experiments for a nonlinear dataset. . . . .
allows for explicit representation of cyclic environmerasd
. INTRODUCTION addresses data association [10]. The delicate issue, leowev
Since its inception with the fundamental work of Smitr\%’m'%hefegatrhes C;)rrseific():;ttit:)i ftEIFfepSi‘: :grt'gvl\(/ég pt?lrefr?ilgor
et al. [1] and Moutarlier and Chatila [2], roboticists havef\ion I rey P tati P bq liminati P K tob
been trying to address scalability issues associated with & presentation sparse by eliminating weak tobo
Extended Kalman Filter (EKF) based approach to SLA gndmark constraints.
While this approach is often considered the “standard” [3]
and is attractive in its simplicity (because it only reqsire In the following, we explore in depth the approximation
tracking first and second moments of the joint landmark-tobemployed by SEIFs to enforce sparseness. We show that a
distribution), a well known fact is that EKF SLAM inferenceparticular assumption in SEIF’s sparsification derivafiesds
requires quadratic complexity in the number of landmarke inconsistency of the global map error covariance est@sat
per updateto maintain the joint-posterior correlations. As @owever, empirical testing indicates that local map refati
consequence, the direct application of the EKF to SLAM iand relative uncertainties are preserved. In addition, reegnt
limited to relatively small environments (e.g., less thaart a slightly modified derivation which yields a sparsificatioife
100 landmarks). that is shown to produce both global and local map estimates
Recently, a new class of scalable SLAM algorithms hav@mparable to the full-covariance EKF while maintaining th
been proposed by Thrun et al. [4], Paskin [5], and Fresame sparse representation as SEIFs — however, sparsificati
[6], [7] — all based upon the canonical-form which hass no longer constant-time. We demonstrate our insights by
the nice interpretation as a Gaussian graphical model [8hncluding with a benchmark comparison for a linear Gaus-
[8]. As Thrun et al. [4] empirically first showed, and Fressian SLAM simulation and in addition present results for a
later analytically proved [9], the inverse covariance fxatr nonlinear experimental dataset.



Il. BACKGROUND

Expanding the quadratic in the exponential of the Gaus-
sian random variablet, NN(ut,Et) yields the canonical
parameterizatiog, ~ N ~!(n,, A;) wheren, and A, are the
information vector and information matrix, respectiveiyl].
Equation (1) shows how the two forms are mathematically
related while Table | expresses the dual relationship ttaexe h
with respect to marginalization and conditioning. For aggah

. ) . . Fig. 1.
discussion of the mechanics and properties of the ensu;ﬁ&rices

A comparison of the structure of the covariance arfdrimation
as is typically seen in feature-based SLAM implaatens; darker

information filter the reader is referred to [4], [11]. shades represent larger magnitudes. (left) The correlatiatrix is dense and
1 requires quadratic storage. (right) The normalized infiiiom matrix exhibits
A =37 n, = Aty (1) “natural” sparsity with a majority of the elements being ensl of magnitude
smaller than the few dominant entries.
TABLE |
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON links and enforce exact Sparsiw in the information matrix.
A GAUSSIANDISTRIBUTION EXPRESSED INCOVARIANCE AND Their Concept was to partition the landmark map varidide
INFORMATION FORM (i.e.,M = {m™* m™}) into a set of active featuraa™ (i.e.,
(e ) —N([“a] [Zw 2Qg]) —N*l(["a] [Aw Aaﬁ]) those with a nonzero off—di_agonal element linking the_m ® th
pleu?) = Be ] [ Bpa Bep |/ M6 [0 | Aga App robotx;) and a set of passive featuras™ (i.e., those with no
MARGINALIZATION CONDITIONING link to x;). They showed that by enforcing an upper bound
i +
p(e) = [ p(a, B)dB (x| B) = p(ev. B)/p(B) on the number of active features™, that they could control
; ) the resulting fill-in of the information matrix.
Cov. | H= Ha W= Hat ZapZps(B = pp) A simple explanation for the effectiveness of their striteg

FORM _ . . . ..
Y =Yoo ¥ =Yoo — Eaﬁzﬁézﬁa comes from viewing motion predlct|on as a two-step process

of state augmentation at,,; followed by marginalization
over x;. Referring to Fig. 2(a) we see that filtering naturally
tends to fill-in the information matrix by creating new links
between all active features through elimination xof (see
A. Controlling Feature-Based SLAM Sparsity Table | for details of marginalization in the informatiorria)

h ¢ based which while passive features remain unaffected; for a more intdept
Most SLAM approaches are feature-based which assumgs. ssion of this phenomenon the reader is referred to [5],

that the robot can extract an abstract representation bfreesa [[12] Insightfully, as Fig. 2(b) shows, we cagontrol the
in the environment from its sensor d_ata_ and then US€ I&tive feature fill-in of the information matrix byoundingthe
obser\r:atul)n gf thekse feqtures I_fo_rllol;:a_l;zatlgn [1_]' "? thgs_r number of links connected to, beforemarginalization occurs.
proach a landmark map is explicitly built and maintainede Thry;e key insight motivates the concept behind sparsificatio

procebss_k;)_f concu_rrr(]antly p|>erform||n(§; I:\)callfzatlalmhd feat:ure which is the process of how we remove these links to satisfy
map building are inherently coupled, therefore, the robostm | . - e feature bound.

then represent a joint-distribution over landmarks andesur Before moving on to discussow SEIFs actually enforce

pose, i.e., the upper bound on the number of active features, it will
p(&, | zt,ud) :N(Nt,Et) :J\/_l(nt,/\t) (2) prove useful to first elucidate the conditional independ@enc

- relationship implied by active and passive features.
where ¢, = [x/,M']T represents the current robot state

and landmark map respectively! are the measurementsB- Implied Conditional Independence
andu® the control inputs. In (2) we have explicity modeled A very useful property of the canonical-form is that the in-
this distribution as being jointly-Gaussian based uporitagd formation matrix has the direct interpretation as a noedatad
white noise models and first-order linearizations of oucess Bayes Net [13] where: random variables are nodes, non-
and observation models as described in [1], [4]. The keero off-diagonal elements are edges/constraints, anol zer
behind scalable SLAM algorithms in the canonical-form isalued off-diagonal elements amassingedges implying avail-
based upon the insight that the information matrpmaturally able conditional independencies [8]. Applying this prdper
tends to exhibit strong and weak constraints as shown inlFigto SEIF’s partitioning of landmarks into active and passive
features, we see that Fig. 3 correctly illustrates the tiesul
What Thrun et al. [4] insightfully observed was that thdlock information matrix and non-directed Bayes net for the
time-projection step is the cause for creating these weSEIF SLAM posterior over robot and features. In particular,
constraints, and furthermore that by bounding the number IBfy. 3 clearly shows that there is a missing edge between the
nonzero off-diagonal elements linking the robot to landksar robot x; and the passive featurea— implying that the two
that they could eliminate the generation of many of thesekweare conditionally independegiventhe active featurem™.

/

INFO.| =" — Aapl55mp ' =n, — AapB
FORM _
A=RAaa —AapAzihpa | N =Aaa




active featuresm™ corresponds to simply extracting the
{x¢,m~} sub-block from the information matrix\; (see
Table I). Referring again to Fig. 3, we note that extractimig t
sub-block results in a block-diagonal conditional infotioa
matrix overx,; and m~ whose inverse is a block-diagonal
covariance matrix, thus, conditional independence is guaov
As we show next, we can exploit this conditional indepen-
dence relationship to derive a sparsification rule whicbves!
us to bound the number of active features.

IIl. SPARSIFICATION

In feature-based SLAM, landmarks become active through
observation causing them to become linked to the robot
through a shared off-diagonal constraint — this constraint
decays over time if the landmark is not re-observed, but
will never become exactly zero (i.e., passive) unless it is
“sparsified”. Sparsification refers to the operation whéesée
weak robot-landmark constraints are pruned and featuees ar
(=) (=) made passive. It is a usef@pproximation which allows
e sparsity to be enforced in the information matrix by boudin

the number of active features as describedllpA.
- A. SEIF Sparsification Rule
Sparsification is required whenever the active featurestiire
" . old is exceeded through landmark observation. SEIF'sesiyat
- for sparsification is based upon partitioning the landmaapm

®) M into a union of three disjoint sefel = {m° Um*™ Um™}
where in a slight abuse of our previous notatian: are
Fig. 2. A graphical explanation of SEIF's methodology fomwolling the currently passive features which wilmain passive after

sparsity in the information matrix. (a) A sequence of iliasibns depicting sparsifying,m* are the currently active features which will
the evolution of the Bayes Net and corresponding infornmati@trix resulting

from time projection when viewed as a two-step process & stagmentation '€Mainactive after sparsifying, anah” are the currently active
followed by marginalization. Gray shades imply magnitudéhwhite being  features which willbecomepassive after sparsifying.

exactly zero. From left to right we have: (1) the robat connected to four We begin our derivation of the SEIF sparsification approxi-
active featuresmi.3 andms; (2) state augmentation of the time-propagated . .. .

robot posex;.1; (3) marginalized distribution where the old pose, has mation by factorizing the SLAM posterior over the robot and
been eliminated. (b) A sequence of illustrations highiigitthe concept mMap as:

behind sparsification. If featurm; can first be made passive by eliminating 0 n _

its link to the old posex:, then marginalization ovex; will not link it to p(Xt,m -, m )

any of the other active features. This implies that we cartrobfill-in of the
information matrix by bounding the number of currently eetfeatures.

i1
xt

my

:p(xt | mo,er,m*)p(mO,m*,m*) (3a)

*.m”) (3b)

L where for notational convenience we have omitted expyicitl
writing out the conditioning oa® andu’. The above factoriza-
tion uses the available conditional independence disduisse

e e §ll-B between the robot and passive features to arbitragly a

sign a value to the passive features in the conditional (3a) (
m~ = «) without influencing the conditional robot posterior
Fig. 3. An illustration of SEIF's concept of active and passfeatures (; 0 + -\ — 0 + i
and their relation to the robot. (left) A schematic of thedi® x 3 SEIF (ie. p(}.{t | ms,m-,m ) — p(xt. | m~, m )) Note that I.n
information matrix. Dark squares correspond to nonzerckolements while the derlva_tlon presented in [4} is simply set to zero Wh'!e
white squares corresponds to exactly zero block elemengtitf The SEIFs  we leave it a free parameter for the purposes of exposition.
information matrix e>_(pre_ssed as a non-d|re_qted B_ayes-‘Nm.mlssmg edge The SEIF sparsification approximation is derived from (3b)
betweenx; andm™ implies available conditional independence. by imposing thaim® be passive via dropping it from the robot
posterior as

=p(x; | m”,m*, m” = a)p(m’ m
Xt
mt

m

Mathematically, we can also easily prove this rela- psers(x¢, m’, m™, m™)
tionship by noting that conditional independence for a
Gaussian distribution implies that the conditional paster n _
p(xs, m~ | mT,zt ut) must have a block-diagonal covari- = pe (¥, m* | m” = a)pD(mO,mﬂ“,m—) (4b)
ance matrix. In the information form, conditioning on the pe(m® | m- =)

zp(xt | mt, m~ = a)p(mo,mﬂm*) (4a)




where (4b) merely expresses the conditional of (4a) asBa Modified Sparsification Rule

ratio and the subscriptss, pc, pp are used for notational | the previous section we showed that the derivation of the
convenience to reference the different pdfs involved in iiSg|F sparsification rule introduces a conditioning on a ijzec
calculation. While the factorization expressed in (3b)hie-t yeajization of the passive features — i.e., their mean eséim
oretically exactdue to the conditional independence betweeyis conditioninginfluenceshe outcome of the sparsification

x; andm™ given the active features, equation (4) iseirror
becausex; is no longer conditionally independent @i~
given only a partial set of the active features (i.e., theo$eil

approximation and in particular can modify the resultingame
estimate as evident by the functional dependencenoim
(6). In the following we show that we can easily modify the

active features isn” Um™). This implies that the particular original SEIFs approximation to derive a more correct \@rsi

value ofa we choose modifies the posterior approximationgf the sparsification rule by explicitly using,’s conditional
Equations (5)—-(8) summarize the SEIF sparsified posteriggependence of the passive featuras to drop its depen-

(4) as expressed in both covariance and information form gence. This modified version of the SEIFs sparsification rule

due to space limitations we omit their derivation and only;ij| pe shown to preserve the state mean and, as demonstrated

present the resulting expressions. For ease of comparigoniw sy, provide a high fidelity approximation yielding results

use the same notation as [4] wheSedenotes a projection comparable to the full-covariance EKF.

matrix over the state spadg (e.g.,x; = S,,§, extracts the  we begin by factorizing the posterigi(x;, m®, m*, m™)

robot pose). Note that the mean update in equation (6) gleagking Bayes rule like in equation (3a) of the SEIF derivation

shows that the original mean vectpr, is modified during pyt this time we explicitly employ the available conditibna

the sparsification step for values of # S;, p, indicating
a’s influence on the termp(x; | m*, m™ = «) used in the
approximation (4.
Covariance Form

¥ = (Szt7m+2515;7m+ — Sm+2613;+
+ SmU,mﬂm*Eli)lSr—rzo,m*,m*)_l (5)
By =ty + St (Su,m+ S5 S, mt — S B S ) X

S0S- (S SiSp-) e = Shom) 6
where
S5 = 8] ot (1= SeSpn- (S TeS-) S ) SeSy s
e =5, (1 — S (ST z,gsm,)*15;,)2,55,71+
2D = S0 mt e Dm0 mt m—
Information Form

Ay = S,, m+ MBS,

Te,mt

= St AcSs + Smomt m-ADSpo it - (7)
Ny = Se,m+MB — Sm+MNc + S0 m+ m-MNp 8
where
N, = 2tS -
Ap=S8] .+ (I — AS, 0 (S,ILOAtSmo)*1SLU)AtSZt,m+
M = St (1= AeSpn0 (S0 AS,0) T S0 ) (1, = )

Ac =Sl (I — AtSy, 0 (ST 0ASs, o)

( )7 S:—cl,n’bo)AtSmJr
ne = S (1= Ay, 0 (1, 0 AeSay o) ™ ST, o) (1 = )
Ap =57 (1 — A¢Sa, (s;AtSu)*15;)Atsmo,m+,m,

mO m+ m—

N5 = S0 e (1= ey (ST, AeS2) 'S, )y

1The expression for the sparsified information vector aseuresl in [4]

corresponds to settinge = S! _ p,, (i.e., the mean of the passive features) .

and notoc = 0 as stated in their paper.

independence between the robot and passive features piwen t
active features which allows us to drap~ from the posterior
overx; as

p(Xt, moa m+7 mi)

= p(xt | mo,er,m*)p(mO,m*,m*) (9a)

g'p Xt | mo,er)p(mO,er,m*) (9b)
0 +

_pbemmY) o mtms) (@)

p(m® | m*)
The posterior factorization shown above is exact where for
convenience equation (9c) merely re-expresses the conditi
over x; in (9b) as a ratio. To obtain the sparsified posterior
approximation, we now impose conditional independence be-
tweenx, andm as

9% 0 + —
pMODRULE(Xtam , M, 1M )

p(x¢ | m*)p(m® | m™¥)

= (0 [ ) p(m’, m™,m~) (10a)

=p(x¢ | m*)p(m’®, m*, m") (10b)
Xt + _

= %pD(mo,er,m ) (10c)

where again for convenience equation (10c) simplifies the
sparsified posterior to a ratio of marginals and the subtscrip
pu, pv, pp are used to notationally reference the different
pdfs involved. As equations (10a)-(10b) show, sparsificati
is equivalent to imposing conditional independence, wliich
turn is equivalent to dropping dependence on the set offiesitu
we wish to deactivate (i.e.m®). The resulting modified
sparsification rule is summarized by equations (11)—(14gkvh
express it in both covariance and information form.
Covariance Form

— S Sy S

it = (Smt,m+2&15;7m+ '
+ S0t - Ep S0 ) T (11)

ey = My (12)



where

T
Yu = Sfﬂtym+ Et‘szt,m+

_aoT
ED - Sm“,m*,m* EtSm“,m*,m*

Yy =8, +5:5,.+

Information Form

Av = Su,m+AuSy, e — St AvS s
+ S0 mtm-ADS ot - (13)
rf]t = Oz,mtNuy — SernV + Sm”,m*,m*nD (14)

where

AU = S;rt’m+ (I — AtSmoymf X
(S:’Lo,m*AtSmU,m*)71‘5;07m*)AtSwhm+

Ny = S;;;m* (I - AtSmO,m* (Srzo,m* AtSmO,m*)il‘sr—rzO,m*)nt
Ay =S, (1 — AtSy, 0 e X
(S;)rt,mo,m
Ny = S;ﬁr (I - AtSwt,mU,m* X
—1
(S;,mo.,m*AtScct,mo,m*) S;!;,mo.,m*)nt
Ap =SS0 s e (1 — AsSs, (S;Atsu)715;)At5m07m+7m,

N5 = S0t - (1= oS (ST AS2) T SE, ),

—1 T
NS0 ) ST, 0 )i

moves around in the environment, it measures the relative
position of local point features, again perturbed by whiesa.

The desired sparsity is expressed by limiting the number of
active features to ten percent of the total number of lanémar
in the environment. As the simulation has been restrictédxo
SLAM, we can compare the effects of the two sparsification
routines relative to the optimal Kalman Filter.

To test the consistency between the different filter un-
certainties and the true state estimation errors, we use the
normalized estimation error squared (NEES) [11] computed
based upon a series of Monte Carlo simulations and two
different error metrics. The first metric relates the grotmith
to the direct output of the filters and provides a measure of
global error. The second metric computes the state estimate
as expressed relative to the first feature that was obsextyed
via the standard compounding operatiot),,; = ©x,, D X;
and provides a measure Wfcal/relative error. Fig. 4(a) and
Fig. 4(c) compare the two error metrics for the vehicle posit
NEES score for the KF and information filters. Similarly,
Fig. 4(b) and Fig. 4(d) show the normalized errors for a
single map feature and are representative of the perforenanc
for other map elements. The horizontal threshold signifies t
97.5% upper bound for the chi-square test. Looking at the
estimate of vehicle and map positions in the world frame,
the modified-rule yields errors nearly identical to thosehaf
KF not only in regards to magnitude, but also behavior over

In particular, note that equation (12) shows that the matlifigime. In comparison, the SEIF global errors are seen to be
sparsification rule clearly maintains the mean estimate: Fuoticeably larger, though in contrast, the normalizedtieda
thermore, as seen by careful inspection of the projectianimaerrors are roughly equivalent to those of the KF and modified
ces involved in equation (13), it simultaneously deactigdahe filter. This apparent discrepancy is indicative that thatre¢
map featuresn® (i.e., S, .+ only populates the robot/activemap estimates for all three filters have converged while the

feature sub-block of the resulting information mat).

global SEIF estimate has an absolute state estimate which is

However, a major drawback to the modified rule’s correctnesgonsistent.
is that sparsification is no longer a scalable operation aswe can gain further insight into the consequences of spar-
evident by the expressions far; and Ay which require large  sification by looking at the covariances associated wittheac

matrix inversions over the passive featuras .

IV. RESULTS

filter. Fig. 5 provides a histogram comparing the ratio of
determinants of the absolute and relative feature covegian
matrices for the KF to those of the information filters. To aid

In this section we investigate the implications associatédl interpreting the ratio as a metric: values of one represen

with the different sparsification rules by considering tvifbea-

ideal, while those larger than one indicate the amount of-ove

ent scenarios in which we compare the sparsified informatigdnfidence. For both map representations, we see that the two
filters to that of the standard Kalman Filter (KF) formulatio sparsified uncertainty measures are over-confident wihects
In the first scenario we consider a linear Gaussian (L&) those of the standard KF and, in turn, are inconsistert wit
SLAM simulation in which the KF is the optimal Bayesthe true estimation error. However, the difference in magts
estimator and provides a benchmark measure against whighween the confidence regions associated with the modified-
to compare the different sparsification routines. Subseitjye rule and the standard KF are nearly negligible in both a dloba
in the second scenario we test the algorithms on a real-wogdfd local sense while the SEIF rule has absolute uncertainty
indoor nonlinear dataset to understand their performancevihich is significantly more over-confidéntUpon referencing
practice. the state estimates relative to the first observed featwegh,
the SEIF covariance matrix reflects nearly the same estimate
of uncertainty as the KF and the modified-rule. Note that & th

In an effort to compare the effects of the two sparsificatigfrocess of root-shifting the map to the first feature, thgioail
strategies in a controlled manner, we start by applyingltheet world origin is now included as a state element. While the
estimators to a synthetic dataset. The vehicle motion islpur

translational, gengr_ated b_y a Iinear,_ ConSt_ant'VeIOCiqdah 2The exception is with the first feature added to the map wisiche source
corrupted by additive white Gaussian noise. As the robeitthe outliers shown in the plots in Fig. 5(a).

A. Linear Simulation
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s Fig. 6. Photograph of experimental setup on MIT tennis cuitth hurdles.
2 Ground truth is determined from the court baselines.
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(b) robot was manually driven in an environment consisting of
) ) _ . _ N a set of 64 track hurdles positioned on four adjacent tennis
Fig. 5. The KF estimates of feature uncertainty as a fractbnthe ; ; ;
uncertainties obtained using the SEIF and modified-ruleparticular, we COU!’tS which prowde Qround truth fOIT the eXpe”ment' The
show histograms over the ratio of determinants for the memeht covariance Ve€hicle made observations of the environment using a SICK
matrix sub-blocks. The uncertainties depicted in (a) anmmaed directly |aser range finder and was equipped with wheel encoders
from the absolute covariances maintained by the filters. Tistograms s ; ;
in (b) describe therelative map determinants for the covariance matrice£Or determm.lng the motion control '”pF‘tS- The pmblem (_)f
corresponding to the state as expressed relative to theobissirved feature. COfrectly pairing measurement data with the corresponding
Ratios greater than one indicate that both sparsificatiothede result in  hurdle was addressed offline and, thus, data association is
estimates of feature position which are over-confident. él@y the modified- identical for each SLAM filter. Under our feature-based espr
rule produces uncertainty estimates which are comparatileose of the KF . L )
for both the absolute and relative maps. On the other hantf Btintains Sentation, each hurdle serves as an individual coordinate,
absolute estimates which are significantly over-confidehilenthe relative parameterized by a base Ieg position and its orientation.
uncertainty estimates are approximately equivalent teehof the KF and : : :
modified-rule. In both plots in (a), the outlier nearest t@ @mthat of the first ,An EXtend,ed Kalman ,Fllter (EKF) IS applled concgrrently
mapped feature. The outlier shown in the SEIF histogram jregresponds  With the two information filters, relying upon the sparsitioa
to the representation of the original world origin in the trebifted reference routines to maintain a limit of ten active features. The hmxgl
frame and is a consequence of the over-confident absolute map state estimates exhibit much the same behavior as we see in
the LG SLAM case with the contrasting absolute and relative

performance of the SEIF. This is perhaps best revealed by the

with those of the rest of the relative map estimates, the saSI%'?/'i\g em?g,; g? ?ﬁ éa;?i&yr;ge St r;;e;eerﬁnlirjf. tlt? eFllgo'bg(las)ta\Gls
is not true for the SEIF's uncertainty measure of the world- P P g

orgin as indicated by the ouler n Fig. 5(0). This indiest | orrcociauor: ENforeing sparsiy with e modifed-fafdls
that while the relative SEIF map estimate has converged ? L . .

) o L . 'ﬁgghglble difference from the results of the EKF. As in the
estimate of the global world origin remains inconsistent.

The effect of ificati th . imat LG simulation, the SEIF yields global map estimates which
€ efiect ot sparsilication on the covariance estimates Jp, j,.onsistent as a majority of the true hurdle positiats f

'%ell outside the three-sigma uncertainty regions. Altgvedy,
ot-shifting the map relative to the first feature instated

to the map, as depicted in Fig. 7(b), reveals that both
arsified filters as well as the EKF maintain relative pister
which are very similar.

world origin uncertainty estimate for the modified-rule egg

Though there is little difference between the three sets
feature position estimates, the errors for the absolute=S h
map are larger due to the higher confidence attributed to
estimates. In the case of root-shifting the state, the gibigi

difference that we see between a feature’s auto-covargrze
block for the relative map leads to nearly identical noreedi V. DISCUSSION

errors. Both the simulated and nonlinear experimental datasets re-

veal that the modified sparsification rule yields error eatas
which are nearly identical to those of the standard EKF in
Simulations are helpful in investigating our findings withho both a global and local sense, while the SEIF estimate is only
having to take into consideration the effects of lineait@at comparable locally. Despite its advantages, close ingpect
More often than not, though, real-world SLAM problemseveals that the modified-rule estimates are still sligtrer-
involve nonlinear vehicle motion and perception models ambnfident with respect to the KF. This section seeks to emplai
include noise which is not truly Gaussian. For that reasan, whe cause of this inconsistency.
tested the estimation algorithms on a typical, nonlineask. Instructively, it can be shown that this inconsistency is a
For our experimental setup, depicted in Fig. 6, a wheel@gtural result of the fact that the sparsification routmposes

B. Experimental Validation



conditional independence between the robot and the deattirfortunately, this accuracy comes at a cost as the modified
vated featuresn®. To illustrate this, consider a general threeule requires the inversion of a matrix of the size of the namb
state distributionp(a, b, ¢) = p(a|b, ¢)p(b, ¢) and its sparsified of passive features and, thus, is no longer constant-time.

approximation where any possible dependence betweserd
b is ignored

p(a,b,c) = p(alc)p(b, c)

Furthermore, despite the modified-rule’s accuracy with re-
spect to the KF, LG SLAM simulation results indicate thath
(15) sparsification routines lead to over-confident state estisna

) o We investigated the cause of this inconsistencytVh and
To understand the effect of this approximation on LG SLAM.5¢jded that this over-confidence is a direct result of the

suppose the true distribution is given by

pla,b,c) =
Ha o2 PabTa0b  PacTalec
N |, | paboacs of PbeOb0c (16)
He PacO0a0c  PbcTb0c Uz

Applying the sparsification approximation of (15) we have 0

ﬁ(a7 b, C) =
Ha 0_(21 PacPbcTa0b Pac0alc (21
N Mo | 5 | PacPbcOalb O_g PbcOb0c (17)
fhe PacTa0c PbcOb0e ol

3

A necessary and sufficient condition for the approximatiorg !
to be consistent is that the covariance matrices obey the in-
equality,S—¥ > 0 [14]. A sufficient condition test for positive [4]
semi-definiteness is that the determinant of all upper igft s
matrices be positive [15]. Applying this test we see thaf),(17
does not, in general, satisfy the positive semi-definitenegs)
condition because the determinant of the upper 2ft 2
of £ — ¥ (i.e., det [(pacpbcfpab)%db (Pacpve=par)oact 1y ig less
than zero forp,.ppe # pap- HeENce, extending this insight we
see that imposing conditional independence between ttat rob
and the deactivated featuras, results in an approximation
to the joint posterior which is inconsistent. Thereforeuph
the modified-rule estimates are comparable to the KF, thi§]
explains the cause of their slight over-confidence. [9]

(6]

VI. CONCLUSION

In conclusion, recent novel insights into the canonic&”
formulation of SLAM have revealed sparseness as a “natural”
characteristic of the information parameterization anstehallll
lead to promising new research into scalable algorithmsiyMa
of these new approaches are founded upon pruning relativgly
weak constraints in the information form to achieve exact
sparsity. The delicate issue these methods must deal vath tr[113]
is “how to approximate the posterior with an exactly sparse
representation in a consistent manner?”

In this paper, we have demonstrated that the method il
enforcing sparsity employed by SEIFs leads to an incomngiste
absolutemap, while empirical testing indicates that tetative (1]
map relationships are preserved. We then showed that by
exploiting the conditional independence between the rahdt
the passive features given the active map, that a new modified
version of the SEIF sparsification rule can be derived. It was
shown that this modified-rule yields a sparsified posterior
comparable to that of the EKF in regards to the mean and
uncertainty estimates for both tladsoluteandrelative maps.

approximation by which the two filters achieve an exactly
sparse representation of the posterior. It appears thdénatha
computationally efficientind theoretically correct approxima-
tion for maintaining a sparse information matrix repreaéoh

for SLAM remains an open research task.
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Fig. 4. The normalized estimation error squared for theateh{a) and (c), and one of the features, (b) and (d), as atdrbased upon 20 linear Gaussian
Monte Carlo simulations. The horizontal line signifies the 97.5% chi-square upper bound. The error shown in the top two p{ajsand (b), corresponds
to a direct comparison of the filter estimates to the grouathfrand represents a measurgylifbal consistency. In the bottom two plots, (c) and (d), we plot
the local normalized error computed relative to the first featureainsated in the mapx,,; = Sxm @ x;. The larger global normalized error associated
with the SEIF is a result of an absolute state which is sigaifiily over-confident. The relative map error, on the otherdhds nearly identical to that of the
modified-rule and KF, empirically indicating that the SEllgs locally consistent estimates.
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Fig. 7. Comparison of the EKF and information filter SLAM mapih ground truth (cross-hairs) for the hurdles experirakmfataset. The plots in (a)
correspond to the absolute feature poses as directly astintyy the three SLAM algorithms together with the threersigconfidence bounds. Shown in
(b) are the relative maps and corresponding three-sigmartaiaty ellipses transformed relative to the first hurdiieled to the map. As indicated by the
right-most plot of (a), the SEIF maintains global featuréneates which are significantly over-confident. The modiiel, meanwhile, yields estimates for
absolute feature pose and uncertainty which are nearlfticdéno those of the EKF. Considering the relative map stme; the two sparsified filters perform
similarly to the EKF.



