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1. INTRODUCTION AND DEFINITIONS

In this booklet we consider the following problem,

Definition 1.1. Least Squares Problem
Find x*, a local minimizer foP

F(x) = 3> (fix)*,
i=1
wheref; : R" — R, i=1,...,m are given functions, and > n.

Example 1.1. An important source of least squares problendaa fitting As an
example consider thaéata points(¢1, y1), - - ., (tm, ym) Shown below

Figure 1.1. Data points{(¢;, y:) } (marked by+)
and modelM (x, t) (marked by full line.)

Further, we are givenfitting mode]

M(x,t) = zze™" + z4e™" .

D The factor% in the definition of F'(x) has no effect ox*. It is introduced for conve-
nience, see page 18.
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The model depends on tiparametersx = [x1, 22, x3,z4] " . We assume that
there exists ax' so that

yi = M(x' t;) + e,
where the{e;} are (measurement) errors on the data ordinates, assumed to be-
have like “white noise”.
For any choice ok we can compute theesiduals

fi(x) =y — M(x,t;)

=y —x3e”t —xge®t . i=1,...,m.

For aleast squares fithe parameters are determined as the minimiZeof the
sum of squared residuals. This is seen to be a problem of the form in Defini-

tion 1.1 withn = 4. The graph ofd (x*, t) is shown by full line in Figure 1.1.
|

A least squares problem is a special variant of the more general problem:
Given a functionF: R"—R, find an argument of" that gives the minimum
value of this so-calledbjective functioror cost function

Definition 1.2. Global Minimizer
GivenF' : R" — R. Find

xt = argmin {F(x)} .

This problem is very hard to solve in general, and we only present meth-
ods for solving the simpler problem of finding a local minimizer foran
argument vector which gives a minimum valuefoinside a certain region
whose size is given by, whered is a small, positive number.

Definition 1.3. Local Minimizer
GivenF : R” — R. Findx* so that

F(x*) < F(x) for |x—x"[|<4d.

In the remainder of this introduction we shall discuss some basic concepts in
optimization, and Chapter 2 is a brief review of methods for finding a local
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minimizer for general cost functions. For more details we refer to Frandsen
et al (2004). In Chapter 3 we give methods that are specially tuned for least
squares problems.

We assume that the cost functidhis differentiable and so smooth that the
following Taylor expansioris valid ?

F(x+h) = F(x)+h'g+ th"Hh+O(||h]?), (1.4a)
whereg is thegradient
OF

8—:1:1(X)
g =F'(x) = , (1.4b)
oF
pr. (x)
andH is theHessian
_ " _ 82F

If x* is alocal minimizer andlh|| is sufficiently small, then we cannot find a
pointx*+h with a smallerF-value. Combining this observation with (1.4a)
we get

Theorem 1.5. Necessary condition for a local minimizer.
If x* is a local minimizer, then

g =F'(x*)=0.

We use a special name for arguments that satisfy the necessary condition:

Definition 1.6. Stationary point.  If
gs = F/(XS) =0 )
thenxs is said to be atationary pointfor F'.

2) Unless otherwise specifieff, || denotes the 2-nornfih|| = \/h% + -+ h3.
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Thus, a local minimizer is also a stationary point, but so is a local maximizer.
A stationary point which is neither a local maximizer nor a local minimizer
is called asaddle point In order to determine whether a given stationary
point is a local minimizer or not, we need to include the second order term
in the Taylor series (1.4a). Inserting we see that

F(xsth) = F(xs) + sh"Hsh + O(||h|*)

] a.7)
Wlth HS = F”(Xs) .

From definition (1.4c) of the Hessian it follows that aByis a symmetric

matrix. If we request thall; is positive definitethen its eigenvalues are

greater than some numb&r- 0 (see Appendix A), and

h'"Hsh > 6 ||h|?.
This shows that fot|h|| sufficiently small the third term on the right-hand

side of (1.7) will be dominated by the second. This term is positive, so that
we get

Theorem 1.8. Sufficient condition for a local minimizer.
Assume thaks is a stationary point and thRt” (xs) is positive definite.
Thenxs is a local minimizer.

If Hsis negative definitethenxs is a local maximizer. 1Hs is indefinite(ie
it has both positive and negative eigenvalues), theis a saddle point.
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All methods for non-linear optimization are iterative: From a starting point
xg the method produces a series of vecte{sxs, ..., which (hopefully)
converges t*, a local minimizer for the given function, see Definition 1.3.
Most methods have measures which enforcedgsending condition
F(XkJrl) < F(Xk) . (21)

This prevents convergence to a maximizer and also makes it less probable
that we converge towards a saddle point. If the given function has several
minimizers the result will depend on the starting poigt We do not know
which of the minimizers that will be found; it is not necessarily the mini-
mizer closest tex.

In many cases the method produces vectors which converge towards the
minimizer in two clearly different stages. Wheg is far from the solution

we want the method to produce iterates which move steadily towards

In this “global stage” of the iteration we are satisfied if the errors do not
increase except in the very first steps, ie

lewt1ll < llex]| for k>K,
wheree;, denotes the current error,

e = X — x*. (22)

In the final stage of the iteration, whexg is close tox*, we want faster
convergence. We distinguish between

Linear convergence
llex+1ll < allexl| whenllei|[issmall 0 <a<1, (2.3a)
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Quadratic convergence
lerxsill = O(lexl?) when||e || is small, (2.3b)

Superlinear convergence
llexs1ll/llexll — 0 for k—oo0 . (2.3c)

The methods presented in this lecture note are descent methods which sat-
isfy the descending condition (2.1) in each step of the iteration. One step
from the current iterate consists in

1. Find a descent directidny (discussed below), and
2. find a step length giving a good decrease infikealue.
Thus an outline of a descent method is

Algorithm 2.4. Descent method

begin
k:=0; x:=xp; found:= false
while (notfound and (k¥ < kpax)
hy := searchdirectionx)
if (no suchh exists)
found:= true
else
o := steplength(x, hy) {fromx in directionhq}
x:=x+ahg; k:=k+1 {next iteraté

{Starting poin
{Fromx and downhil}

{x is stationary

end

Consider the variation of thé-value along the half line starting atand
with directionh. From the Taylor expansion (1.4a) we see that

F(x+ah) = F(x) + oh"F/(x) + O(a?)
~ F(x) +oh'F/(x) for « sufficiently small. (2.5)

We say thah is adescent directioif F'(x-+ah) is a decreasing function of
« ata=0. This leads to the following definition.
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Definition 2.6. Descent direction.
h is a descent direction fdr atx if h'F’(x) < 0.

If no suchh exists, therF’(x) = 0, showing that in this caseis stationary.
Otherwise, we have to choose ie how far we should go frorx in the
direction given byhg, so that we get a decrease in the value of the objective
function. One way of doing this is to find (an approximation to)

ae = argmin,. o{F(x+ah)} . (2.7)

The process is calleline search and is discussed in Section 2.3. First,
however, we shall introduce two methods for computing a descent direction.

2.1. The Steepest Descent method

From (2.5) we see that when we perform a siépwith positive«, then the
relative gain in function value satisfies
lim F(x) — F(x+ah) _ 1
a—0 al[hl] [l
wheref is the angle between the vectdreandF’(x). This shows that we
get the greatest gain ratefif=, ie if we use the steepest descent direction
hgq given by

h'F/(x) = —[|[F'(x)] cos,

heg= —F'(x) . (2.8)

The method based on (2.8) tig = hgqin Algorithm 2.4) is called thateep-

est descent methaat gradient method The choice of descent direction is
“the best” (locally) and we could combine it with an exact line search (2.7).

A method like this converges, but the final convergence is linear and often
very slow. Examples in Frandsen et al (2004) show how the steepest descent
method with exact line search and finite computer precision can fail to find
the minimizer of a second degree polynomial. For many problems, however,
the method has quite good performance in the initial stage of the iterative
process.

2.2. Newton’s Method 8

Considerations like this has lead to the so-caligdrid methodswhich — as

the name suggests — are based on two different methods. One which is good
in the initial stage, like the gradient method, and another method which is
good in the final stage, like Newton’s method; see the next section. A major
problem with a hybrid method is the mechanism which switches between
the two methods when appropriate.

2.2. Newton's Method

We can derive this method from the condition tlsétis a stationary point.
According to Definition 1.6 it satisfieB’(x*) = 0. This is a nonlinear sys-
tem of equations, and from the Taylor expansion

F'(x+h) = F'(x) + F"(x)h+ O(|[h|?)
~ F'(x) +F”(x)h for |h| sufficiently small
we deriveNewton’s methodFind h,, as the solutions to

Hh,=-F'(x) with H=F"(x), (2.9a)
and compute the next iterate by

Xx:=x+h,. (2.9b)

Suppose thaH is positive definite, then it is nonsingular (implying that
(2.9a) has a unique solution), andH u > 0 for all nonzerou. Thus, by
multiplying with h,] on both sides of (2.9a) we get

0<h]Hh,=-h]F/(x), (2.10)

showing thath, is a descent direction: it satisfies the condition in Defini-
tion 2.6.

Newton’s method is very good in the final stage of the iteration, wkese
close tox*. One can show (see Frandsen et al (2004)) that if the Hessian
at the solution is positive definite (the sufficient condition in Theorem 1.8
is satisfied) and if we are at a position inside the region arotindshere
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F’(x) is positive definite, then we get quadratic convergence (defined in
(2.3)). Onthe other hand,¥is in a region wher& " (x) is negative definite
everywhere, and where there is a stationary point, the basic Newton method
(2.9) would converge (quadratically) towards this stationary point, which
is a maximizer. We can avoid this by requiring that all steps taken are in
descent directions.

We can build a hybrid method, based on Newton’s method and the steepest
descent method. According to (2.10) the Newton step is guaranteed to be
downhill if F”(x) is positive definite, so a sketch of the central section of
this hybrid algorithm could be

if F”(x) is positive definite

h := h,

else (2.11)
h := hgy

X :=x+ ah

Here,hgq is the steepest descent direction and found by line search; see
Section 2.3. A good tool for checking a matrix for positive definiteness is
Cholesky’s method (see Appendix A) which, when successful, is also used
for solving the linear system in question. Thus, the check for definiteness is
almost for free.

In Section 2.4 we introduce some methods, where the computation of the
search directiothy and step lengthy is done simultaneously, and give a
version of (2.11) without line search. Such hybrid methods can be very
efficient, but they are hardly ever used. The reason is that they need an im-
plementation oF ”(x), and for complicated application problems this is not
available. Instead we can use a so-callathsi-Newton methodhased on
series of matrices which gradually approddh=F"(x*). In Section 3.4

we present such a method. Also see Chapter 5 in Frandsen et al (2004).

2.3. Line Search

Given a pointx and a descent directidn The next iteration step is a move
from x in directionh. To find out, how far to move, we study the variation
of the given function along the half line fromin the directionh,

2.3. Line Search 10

p(a) = F(x+ah), xandhfixed, a>0. (2.12)
An example of the behaviour @f(«) is shown in Figure 2.1.

y
y =¥0) /

y = @a)

a

Figure 2.1. Variation of the cost
function along the search line.

Ourh being a descent direction ensures that
9'(0)=h"F'(x) <0,

indicating that ifa is sufficiently small, we satisfy the descending condition
(2.1), which is equivalent to

p(a) < ¢(0).
Often, we are given an initial guess anega =1 with Newton’s method.
Figure 2.1 illustrates that three different situations can arise

1° « is so small that the gain in value of the objective function is very
small. « should be increased.

2°  «istoo large:ip(a) > (0). Decrease in order to satisfy the descent
condition (2.1).

3° ais close to the minimizét of ¢(a). Accept thisa-value.

1 More precisely: the smallest local minimizer @f If we increasex beyond the interval
shown in Figure 2.1, it may well happen that we get close to another local minimum
for F.



11 2. DESCENTMETHODS

An exact line searclis an iterative process producing a sekgsas ... .
The aim is to find the true minimizet, defined in (2.7), and the algorithm
stops when the iterateg satisfies

¢ (as)l < 7 [¢"(0)]
wherer is a small, positive number. In the iteration we can use approxima-
tions to the variation op(«) based on the computed values of

o(ag) = F(x4ayh) and ¢'(a;) = h' F/(x+azh) .
See Sections 2.5 — 2.6 in Frandsen et al (2004) for details.

Exact line search can waste much computing time: Whénfar fromx*

the search directioh may be far from the directior*—x, and there is no
need to find the true minimum of very accurately. This is the background
for the so-calledsoft line searchywhere we accept an-value if it does not
fall in the categorieg® or 2° listed above. We use a stricter version of the
descending condition (2.1), viz

oas) < @(0)+71- ¢ (0)-a with 0<y <1. (2.13a)
This ensures that we are not in c&Se Casel® corresponds to the point

(o, p(a)) being too close to the starting tangent, and we supplement with
the condition

@' (as) > 72 ' (0) withy; <7 <1. (2.13b)
If the starting guess on satisfies both these criteria, then we accept it as

as. Otherwise, we have to iterate as sketched for exact line search. Details
can be seen in Section 2.5 of Frandsen et al (2004).

2.4. Trust Region and Damped Methods

Assume that we haveraodelL of the behaviour of” in the neighbourhood
of the current iterate,

F(x+h) ~ L(h) = F(x)+h'c+ h'Bh, (2.14)

2.4. Trust Region and Damped Methods 12

wherec € R" and the matrixB € R"*" is symmetric. The basic ideas of this
section may be generalized to other forms of the model, but in this booklet
we only need the form of given in (2.14). Typically, the model is a second
order Taylor expansion af aroundx, like the first three terms in the right-
hand side of (1.4a), ak(h) may be an approximation to this expansion. It

is generally true that such a model is good only whes sufficiently small.

We shall introduce two methods that include this aspect in the determination
of a steph, which is a descent direction and which can be used withl

in Algorithm 2.4.

In atrust region methodve assume that we know a positive numbesuch
that the model is sufficiently accurate inside a ball with radiysentered
atx, and determine the step as

h = hy = argmin,, <A {L(h)}. (2.15)
In adamped methothe step is determined as

h = hgn = argmin,{L(h) + 3 xh"h}, (2.16)
where thedamping parameter > 0. The term} ph"h = £ 1||h||? is seen

to penalize large steps.

The central part of Algorithm 2.4 based on one of these methods has the
form

Computeh by (2.15) or (2.16)

if F(x+h)< F(x)
x:=x-+h

UpdateA or

(2.17)

This corresponds ta=1 if the steph satisfies the descending condition
(2.1). Otherwiseq =0, ie we do not mové) However, we are not stuck

2) There are versions of these methods that include a proper line search to find a point
x+ah with smallerF-value, and information gathered during the line search is used in
the updating ofA or n.. For many problems such versions use fewer iteration steps but a
larger accumulated number of function values.
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atx (unlessx = x*): by a proper modification ol or i we aim at having
better luck in the next iteration step.

SinceL(h) is assumed to be a good approximationftgx+h) for h suf-
ficiently small, the reason why the step failed is thawvas too large, and
should be reduced. Further, if the step is accepted, it may be possible to use
a larger step from the new iterate and thereby reduce the number of steps
needed before we reasti.

The quality of the model with the computed step can be evaluated by the
so-calledgain ratio
_ F(x) — F(x+h)
~ L(0)-L(h) ’
ie the ratio between the actual and predicted decrease in function value. By

construction the denominator is positive, and the numerator is negative if
the step was not downhill — it was too large and should be reduced.

(2.18)

With a trust region method we monitor the step length by the size of the
radiusA. The following updating strategy is widely used,

if 0<0.25
A:=A/2
elseif o > 0.75
A = max{A,3 x| h|}

(2.19)

Thus, ifp < 1, we decide to use smaller steps, while- 2 indicates that it

may be possible to use larger steps. A trust region algorithm is not sensitive
to minor changes in the threshol@25 and0.75, the divisorp; =2 or the
factorp, =3, but it is important that the numbers andp, are chosen so
that theA-values cannot oscillate.

In a damped method a small value @indicates that we should increase
the damping factor and thereby increase the penalty on large steps. A large
value of g indicates thaf.(h) is a good approximation t&'(x+h) for the
computedh, and the damping may be reduced. A widely used strategy is
the following, which is similar to (2.19), and was was originally proposed
by Marquardt (1963),

2.4. Trust Region and Damped Methods 14
if 0<0.25
W= px2
elseif p > 0.75 (2.20)
= p/3

Again, the method is not sensitive to minor changes in the threshdds
and0.75 or the numberg, = 2 andp, = 3, but it is important that the num-
bersp; andps are chosen so that thevalues cannot oscillate. Experience
shows that the discontinuous changes across the thredhaldand0.75

can give rise to a “flutter” (illustrated in Example 3.7 on page 27) that can
slow down convergence, and we demonstrated in Nielsen (1999) that the
following strategy in general outperforms (2.20),

if 0>0
= p+max{:,1—-(20—1)3}; v:=2
Ml {5:1-(2e—1)%} (2.21)

Wi=pu*xv; vV:i=2%vU

The factorv is initialized tor = 2. Notice that a series of consecutive fail-
ures results in rapidly increasingvalues. The two updating formulas are
illustrated below.

0 0.25 0.75 1 Y

Figure 2.2. Updating ofu by (2.21) withv =2 (full line)
Marquardt’s strategy(2.20)(dasheded line).

2.4.1. Computation of the stepln a damped method the step is computed
as a stationary point for the function

Yu(h) = L(h)+ i ph'h,
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This means thagy, is a solution to

Uy (h) = L'(h) +ph = 0,

and from the definition oL (h) in (2.14) we see that this is equivalent to
(B + pDhgm = —c, (2.22)

wherel is the identity matrix. Ifu is sufficiently large, the symmetric matrix
B+l is positive definite (shown in Appendix A), and then it follows from
Theorem 1.8 thalyy, is a minimizer forL.

Example 2.1. In adamped Newton methdbe modelL (h) is given byc = F’(x)
andB =F " (x), and (2.22) takes the form

(F"(x) + pDhan = —F'(x).
hqn is the so-calledlamped Newton steff. . is very large, then
1
hgn ~ ——F'(x s
n p (%)

ie a short step in a direction close to the steepest descent direction. On the other
hand, ify is very small, therhg, is close to the Newton stdm,. Thus, we can

think of the damped Newton method as a hybrid between the steepest descent
method and the Newton method. (]

We return to damped methods in Section 3.2.

In a trust region method the stég is the solution to aonstrained opti-
mization problem,

minimize L(h)

2.23
subjectto h'h < A2, (2.:23)

It is outside the scope of this booklet to discuss this problem in any detail
(see Madsen et al (2004) or Section 4.1 in Nocedal and Wright (1999). We
just want to mention a few properties.

If the matrix B in (2.14) is positive definite, then the unconstrained mini-
mizer of L is the solution to

2.4. Trust Region and Damped Methods 16

Bh = —c,

and if this is sufficiently small (if it satisfiech’ h < A?), then this is the
desired stephy,. Otherwise, the constraint is active, and the problem is
more complicated. With a similar argument as we used on page 11, we can
see that we do not have to compute the true solution to (2.23), and in Sec-
tions 3.3 and 3.4 we present two ways of computing an approximation to
hy.

Finally, we present two similarities between a damped method and a trust
region method in the case whdBeis positive definite: In case the uncon-
strained minimizer is outside the trust region, it can be shown (Theorem
2.11 in Madsen et al (2004)) that there exists:a0 such that

Bhtr + Cc = _)\htr . (2.24&)

By reordering this equation and comparing it with (2.22) we seelihas
identical with the damped stdpy, computed with the damping parameter
1= A\. On the other hand, one can also show (Theorem 5.11 in Frandsen et
al (2004)) that if we computhgyn, for a giveny, > 0, then

hgm = argmin, | < p,, {L(h)} (2.24b)

ie hym is equal tohy, corresponding to the trust region radifis= || hgp||.

Thus, the two classes of methods are closely related, but there is not a simple
formula for the connection between the andu-values that give the same
step.
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In the remainder of this lecture note we shall discuss methods for nonlinear
least squares problems. Given a vector funcfiolR" — R" with m > n.
We want to minimize|f(x)||, or equivalently to find

x* =argmin {F(x)}, (3.1a)

where

= 3> (fix)? = 3If)|* = 3f(x) £(x) . (3.1b)

=1

Least squares problems can be solved by general optimization methods, but
we shall present special methods that are more efficient. In many cases they
achieve better than linear convergence, sometimes even quadratic conver-
gence, even though they do not need implementation of second derivatives.

In the description of the methods in this chapter we shall need formulas for
derivatives ofF': Provided thaf has continuous second partial derivatives,
we can write itsTaylor expansioms

f(x+h) = f(x) + J(x)h+ O(||h[]?), (3.2a)

whereJ € R™*" is theJacobian.This is a matrix containing the first partial
derivatives of the function components,

(Ix)),, = g;‘;:<x> . (3.20)

As regardsF' : R" — R, it follows from the first formulation in (3.1b),

3. LEAST SQUARESPROBLEMS 18

that)

th 1o 33)
J

&CJ
Thus, the gradient (1.4b) is
F'(x) =J(x) f(x). (3.4a)

We shall also need the Hessianiof From (3.3) we see that the element in
position(j, k) is

F 8fz 8fz 9 fi
D005 % Z(amJ ) g, ) i) g (X)> ’
showing that
F'(x) = Jx)'I(x) + > fila)f/(x) . (3.4b)
=1

Example 3.1. The simplest case of (3.1) is whéfx) has the form

f(x) =b— Ax,
where the vectob € R™ and matrixA € R™*"™ are given. We say that this is a
linear least squares problentn this caseJ (x) = — A for all x, and from (3.4a)
we see that

F'(x) = —A" (b — Ax).
This is zero forx™ determined as the solution to the so-calherdmal equations
(ATA)x* =A'b. (3.5)
The problem can be written in the form
Ax" ~b,

and alternatively we can solve it viathogonal transformationFind an orthog-
onal matrixQ such that

1) if we had not used the facte} in the definition (3.1b), we would have got an annoying
factor of 2 in a lot of expressions.
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R
QTA:[O},

whereR € R"*" is upper triangular. The solution is found by back substitution
in the syster?‘?

Rx" = (QTb)l: n -
This method is more accurate than the solution via the normal equations.

In MATLAB suppose that the arrapsandb hold the matrixA and vectoib, re-
spectively. Then the commané\b returns the least squares solution computed
via orthogonal transformation.

As the title of the booklet suggests, we assume fhiatnonlinear, and shall not
discuss linear problems in detail. We refer to Chapter 2 in Madsen and Nielsen
(2002) or Section 5.2 in Golub and Van Loan (1996). n

Example 3.2. In Example 1.1 we saw a nonlinear least squares problem arising
from data fitting. Another application is in the solution of nonlinear systems of
equations,

f(x*)=0, where f:R"— R".
We can useNewton-Raphson’s methodfrom an initial guess, we compute

X1,X2,... by the following algorithm, which is based on seekihgso that
f(x-+h) = 0 and ignoring the tern®(||h||?) in (3.2a),

Solve J(Xk)hk = —f(Xk) for hy

(3.6)
Xpr1 =Xk +hy .

Here, the Jacobiad is given by (3.2b). IfJ(x*) is nonsingular, then the
method has quadratic final convergence, ig;f = ||xx—x"|| is small, then
[Ixk+1—x*|| = O(d3). However, ifx;, is far fromx*, then we risk to get even
further away.

We can reformulate the problem in a way that enables us to use all the “tools” that
we are going to present in this chapter: A solution of (3.6) is a global minimizer
of the functionF" defined by (3.1),

F(x) = 5lf))1*,

2) An expression likax,: 4 is used to denote the subvector with elementsi =p, ..., q.
Theith row andjth column of a matrixA is denotedA; : andA.: ;, respectively.
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sinceF(x*) =0 andF(x) > 0 if f(x)# 0. We may eg replace the updating of
the approximate solution in (3.6) by

Xp+1 = Xk +aghy
whereqy, is found by line search applied to the functipt) = F(xx+ahg).

As a specific example we shall consider the following problem, taken from Pow-
ell (1970),
z1
f(x) = - ,
9= o™ 0]
with x* = 0 as the only solution. The Jacobian is

1 0

) = {(xﬁm)—2 4m2} ’
which is singular at the solution.
If we takexo = [3, 1]" and use the above algorithm with exact line search,
then the iterates converge @ ~ [1.8016, 0]", which isnot a solution. On
the other hand, it is easily seen that the iterates given by Algorithm (3.6) are
xk = [0, yx]" With yx1 = Syi, ie we have linear convergence to the solution.
In a number of examples we shall return to this problem to see how different
methods handle it. (]

3.1. The Gauss—Newton Method

This method is the basis of the very efficient methods we will describe in the

next sections. Itis based on implemented first derivatives of the components
of the vector function. In special cases it can give quadratic convergence as
the Newton-method does for general optimization, see Frandsen et al (2004).

The Gauss—Newton method is based on a linear approximation to the com-
ponents of (alinear modelof f) in the neighbourhood of: For small||h||
we see from the Taylor expansion (3.2) that

f(x+h) ~ £(h) = f(x) +J(x)h. (3.7a)

Inserting this in the definition (3.1) df we see that
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F(x+h) ~ L(h) = 1£(h)" £(h)
=3f'f+h'J'f+ Jh'JJh
=F(x)+h"J'f+1h"J"Jh (3.7b)

(with f = f(x) andJ = J(x)). TheGauss—Newton stdp, minimizesL(h),
hgn, = argmin {L(h)} .

It is easily seen that the gradient and the Hessiah arfe
L'(h)=Jf+J'Jh, L”h)=JJ. (3.8)

Comparison with (3.4a) shows that(0) = F'(x). Further, we see that the
matrix L" (h) is independent ch. It is symmetric and ifJ hasfull rank, ie

if the columns are linearly independent, tHefi(h) is also positive definite,
cf Appendix A. This implies thatl (h) has a unique minimizer, which can
be found by solving

(I I)hg, = -J'f. (3.9)
This is a descent direction fdf since
hgn F/(x) = hgy (J'f) = —hg,' (JTI)hgy < 0. (3.10)
Thus, we can ushg, for hg in Algorithm 2.4. The typical step is
T _ T
o

wherea is found by line search. The classical Gauss-Newton method uses
a=1Iin all steps. The method with line search can be shown to have guar-
anteed convergence, provided that

a) {x|F(x) < F(xp)}is bounded, and

b) the Jacobiad(x) has full rank in all steps.

In chapter 2 we saw that Newton's method for optimization has quadratic

convergence. This is normally not the case with the Gauss-Newton method.
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To see this, we compare the search directions used in the two methods,
F’(x)hp = —F'(x) and L”(h)hg,=—L'(0).

We already remarked at (3.8) that the two right-hand sides are identical, but
from (3.4b) and (3.8) we see that the coefficient matrices differ:

F'(x) = L"(h)+ > fi(@)t"(x) . (3.12)
=1

Therefore, iff (x*) =0, thenL” (h) ~ F”(x) for x close tox*, and we get
quadratic convergence also with the Gauss-Newton method. We can expect
superlinear convergence if the functiofy$ } have small curvatures or if the
{|f:(x*)|} are small, but in general we must expect linear convergence. Itis
remarkable that the value &f(x*) controls the convergence speed.

Example 3.3. Consider the simple problem with= 1, m = 2 given by

(0) = |yt a1 |- P = 31 + 30012,
It follows that

F'(z) = 2X°2° 4+ 3)\2® — 2(\—1)z,
sox =0 is a stationary point foF'. Now,

F"(x) = 6)\%2% + 6z — 2(A—1) .

This shows that if\ < 1, thenF"/(0) > 0, soz =0 is a local minimizer — actu-
ally, it is the global minimizer.

The Jacobian is

1
(@) = [2)\30—1—1] ’
and the classical Gauss-Newton method frojrgives
20223 + 3z — 2(A—1)zs,
24+ 4z + 4)\29[:2
Now, if A # 0 andzxy, is close to zero, then
Try1 = xk + (A=1Dazg + O(zh) = Azg + O(z7) .

Tk+1 = Tk —
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Thus, if|A] < 1, we have linear convergence Xk —1, then the classical Gauss-
Newton method cannot find the minimizer. Eg with= — 2 andxzo =0.1 we
get a seemingly chaotic behaviour of the iterates,

Tk
0.1000
—0.3029
0.1368
—0.4680

MMHO‘?T‘

Finally, if A=0, then
Tht1 =Tk — T =0,

ie we find the solution in one step. The reason is that in this £ase linear
function. L]

Example 3.4. For the data fitting problem from Example 1.1 ttik row of the
Jacobian matrix is

J(x)i,: :[fmgtiemlti —xqtie®2ti g1t 7612“}.

If the problem isconsistentie f(x*) = 0), then the Gauss-Newton method with
line search will have quadratic final convergence, provided #fjais signif-
icantly different fromz5. If 27 =23, then rankJ(x"*)) <2, and the Gauss-
Newton method fails.

If one or more measurement errors are large, fi{&f) has some large compo-
nents, and this may slow down the convergence.

In MATLAB we can give a very compact function for computihgndJ: Sup-
pose thak holds the current iterate and that thex 2 arrayty holds the coordi-
nates of the data points. The following function returrsndJ containingf (x)
andJ(x), respectively.

function [f, J] = fitexp(x, ty)
t=ty(1); y = ty(:,2);
E = exp(t * [x(1), x(2)]);
f =y - EXx@3); x4
J = -[X(3)*.*E(:,1), x(4)*t.*E(:,2), E]; ]
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Example 3.5. Consider the problem from Example 3fZx*) =0 with f : R" —
R™. If we use Newton-Raphson’s method to solve this problem, the typical
iteration step is

SO|Ve J(X)hn[ = —f(X)7 X =X+ hnr .
The Gauss-Newton method applied to the minimizatioR’'(f) = %f(x)—rf(x)
has the typical step

Solve (J(x)"J(x))hgn = —J(x) f(x); x:=x+ hgn.

Note, thatJ(x) is a square matrix, and we assume that it is nonsingular. Then
(J(x)")~! exists, and it follows thahgn=hnr. Therefore, when applied to
Powell’s problem from Example 3.2, the Gauss-Newton method will have the
same troubles as discussed for Newton-Raphson’s method in that examsle.

These examples show that the Gauss-Newton method may fail, both with
and without a line search. Still, in many applications it gives quite good
performance, though it normally only has linear convergence as opposed to
the quadratic convergence from Newton’s method with implemented second
derivatives.

In Sections 3.2 and 3.3 we give two methods with superior global perfor-
mance, and in Section 3.4 we give modifications to the first method so that
we achieve superlinear final convergence.

3.2. The Levenberg—Marquardt Method

Levenberg (1944) and later Marquardt (1963) suggested to asenped
Gauss-Newton methodf Section 2.4. The steh, is defined by the fol-
lowing modification to (3.9),

(I"T +pDhy, = —g with g=J fandu>0. (3.13)

Here,J = J(x) andf = f(x). The damping parametgrhas several effects:

a) Forally > 0 the coefficient matrix is positive definite, and this ensures
thathy, is a descent direction, cf (3.10).
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b) For large values aof we get

1 1
hm ~ ——g = ——F'(x),
1 %
ie a short step in the steepest descent direction. This is good if the

current iterate is far from the solution.

c) |If uis very small, therhyy, ~hg,, which is a good step in the final
stages of the iteration, whenis close tox*. If F(x*)=0 (or very
small), then we can get (almost) quadratic final convergence.

Thus, the damping parameter influences both the direction and the size of

the step, and this leads us to make a methitbout a specific line search.
The choice of initialu-value should be related to the size of the elements in
Ao = J(x0) J(x0), €g by letting

o = T+ maxi{agg)} , (3.14)

wherer is chosen by the usér. During iteration the size ofi can be up-
dated as described in Section 2.4. The updating is controlled bgaime
ratio
_ F(x) — F(x+hpy)
L(0) — L(hyy)
where the denominator is the gain predicted by the linear model (3.7b),
L(0) — L(hym) = —him' ITf — Lhin" I" Thym,

=—1hin'(2g+ (3T T + pI — pL)hyy)

= %hlm—r (Mhlm - g) .
Note that botHyy, ' by, and—hyy," g are positive, sd.(0)—L(hy,) is guar-
anteed to be positive.

A large value ofp indicates thatL(h;,) is a good approximation to
F(x+hjm), and we can decreageso that the next Levenberg-Marquardt

3) The algorithm is not very sensitive to the choicerpbut as a rule of thumb, one should
use a small value, eg=10-9 if xq is believed to be a good approximation d.
Otherwise, use = 10~3 or evenr = 1.
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step is closer to the Gauss-Newton step if small (maybe even negative),
then L(hyy,) is a poor approximation, and we should increaswith the
twofold aim of getting closer to the steepest descent direatimreducing
the step length. These goals can be met in different ways, see page 14 and
Example 3.7 below.

The stopping criteriafor the algorithm should reflect that at a global mini-
mizer we haveF’(x*) = g(x*) =0, so we can use

lglleo <e1, (3.15a)

wheree; is a small, positive number, chosen by the user. Another relevant
criterion is to stop if the change inis small,

[%new — x| < ex([|x]| +&2) - (3.15b)

This expression gives a gradual change from relative stepsiaten|x||
is large to absolute step sizé if x is close to0. Finally, as in all iterative
processes we need a safeguard against an infinite loop,

k> Ko - (3.15¢)

Also e; andk,,. are chosen by the user.

The last two criteria come into effect egeif is chosen so small that effects
of rounding errors have large influence. This will typically reveal itself in
a poor accordance between the actual gaif'iand the gain predicted by
the linear model (3.7b), and will result jnbeing augmented in every step.
The strategy (2.21) for augmentipgimplies that in this casg grows fast,
resulting in small|h ||, and the process will be stopped by (3.15b).

The algorithm is summarized below.

Example 3.6. By comparing (3.9) and the normal equations (3.5) we sedifiat
is simply the least squares solution to the linear problem

f(x)+J(x)h ~ 0.

Similarly, the L-M equations (3.13) are the normal equations for the linear prob-
lem
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Algorithm 3.16. Levenberg—Marquardt method
begin

k:=0; v:=2; x:=Xx
A:=J(x)Ix); g:=Jx) f(x)
found:= (||gllec < e1); p:=7*max{a;}
while (not found and (k¥ < kpayx)
k:=k+1; Solve (A + p)hy = —g
it [[hum | < ea([x]] +e2)
found:= true
else
Xnew := X + hjm
0:= (F(x) = F(xnew))/(L(0) — L(him))
if o>0 {step acceptabje
X = Xnew
A:=J(x)J(x); g:=Jx) f(x)
found:= ([[g[lc < 1)
pi=pxmax{i 1 - (20—1)*}; v:=2
else
Pi=pxv;, V:i=2%U
end

{f(X)} n {J(X)} h~o0.
0 VAT
As mentioned in Example 3.1, the most accurate solution is found via orthogonal
transformation. However, the solutidny, is just a step in an iterative process,
and needs not be computed very accurately, and since the solution via the normal
equations is “cheaper”, this method is normally employed. n

Example 3.7. We have used Algorithm 3.16 on the data fitting problem from Ex-
amples 1.1 and 3.4. Figure 1.1 indicates that hathndx, are negative and that
M (x*,0) ~0. These conditions are satisfied®y = [-1, —2, 1, —1]". Fur-
ther, we used = 10~ in the expression (3.14) far, and the stopping criteria
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given by (3.15) withe; = €5 = 1078, kmax = 200. The algorithm stopped after
62 iteration steps witk ~ [—4, —5, 4, —4]". The performance is illustrated
below; note the logarithmic ordinate axis.

This problem is not consistent, so we could expect linear final convergence. The
last 7 iteration steps indicate a much better (superlinear) convergence. The ex-
planation is, that th€,” (x) are slowly varying functions of;, and thef;(x*)

have “random” sign, so that the contributions to the “forgotten term” in (3.12)
almost cancel out. Such a situation occurs in many data fitting applications.

v llgll

]
» B

0 10 Zb éO 4‘0 Sb Gb 7‘0
Figure 3.2a.The L-M method applied to the
fitting problem from Example 1.1.

For comparison, Figure 3.2b shows the performance with the updating strategy
(2.20). From step 5 to step 68 we see that each decregsésitmmediately
followed by an increase, and the norm of the gradient has a rugged behaviour.
This slows down the convergence, but the final stage is as in Figure 3.2a.
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Figure 3.2b. Performance with updating strategy (2.20). [

Example 3.8. Figure 3.3 illustrates the performance of Algorithm 3.16 applied to
Powell’'s problem from Examples 3.2 and 3.5. The starting poisgis [3, 1],
1o given byr =1in (3.14), and we use; = ez = 107 %, kmax = 100 in the
stopping criteria (3.15).
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Figure 3.3. The L-M method applied to Powell’'s problem.

The iteration seems to stall between steps 22 and 30. This as an effect of
the (almost) singular Jacobian matrix. After that there seems to be linear
convergence. The iteration is stopped by the “safeguard” at the goiat
[-3.82e-08 , -1.38e-03 |'. This s a better approximation 6" = 0 than we
found in Example 3.2, but we want to be able to do even better; see Examples
3.10 and 3.17. n

3.3. Powell's Dog Leg Method

As the Levenberg—Marquardt method, this method works with combinations
of the Gauss—Newton and the steepest descent directions. Now, however
controlled explicitly via the radius of @must region cf Section 2.4. Powell's
name is connected to the algorithm because he proposed how to find an
approximation tdhy, defined by (2.23).

Givenf : R" — R™. At the current iterat& the Gauss—Newton stép, is
the least squares solution to the linear system

J(x)h ~ —f(x). (3.17)
It can be computed by solving the normal equations

(36973(0) ) bgn = 3 () (). (3.182)
The steepest descent direction is given by

hg = —g = ~J(x) f(x). (3.18b)

This is a directionnot a step, and to see how far we should go, we look at
the linear model
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f(x+ahgy) =~ f(x)+ aJ(x)hgg
U
F(x+ahgg) ~ %Hf(x) + aJ(x)hgg||?
= F(x) + ahgd J(x)" f(x) + 1[I (x)hsg]? .
This function ofc« is minimal for

_ b I el
- [J(x)hsd2  [I(x)gl> (3.19)

Now we have two candidates for the step to take from the current goint
a=ohsg andb =hg,. Powell suggested to use the following strategy for
choosing the step, when the trust region has radiughe last case in the
strategy is illustrated in Figure 3.4.

if [[hgn| <A

hd| = hgn
elseif ||ahggl| > A

hd| = (A/”hsd”)hsd (3208.)
else

hg := ahgg + /8(hgn - ahsd)
with 3 chosen so thdthg|| = A .

Figure 3.4. Trust region and Dog Leg stép.

4) The nameDog Legis taken from golf: The fairway at a “dog leg hole” has a shape as
the line fromx (the tee point) via the end point afto the end point ohg (the hole).
Powell is a keen golfer!
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With a andb as defined above, and= a’ (b—a) we can write
¥(B) = lla+B(b-a)|? = A% = [[b-al** + 2c4 + [lal|* — A?.

We seek a root for this second degree polynomial, and note/that- co
for 8— — o0; ¥(0) = ||al|?*—A% < 0; ¢(1) = ||hgn|*—~A? > 0. Thus,
has one negative root and one root(nl[. We seek the latter, and the most
accurate computation of it is given by

if

IA

c<0
8= (—c+ /@ +b-aP(&? [a?)) /[b-al
else

8= (82 Jal?) /(c+ v + Tb-alP (3~ [a]?)

(3.20b)

As in the L-M method we can use the gain ratio
0 = (F(x) — F(x+hqg)) /(L(0) — L(hq))
to monitor the iteration. Again, is the linear model

L(h) = 3[f(x) + J(x)h|* .

In the L-M method we used to control the size of the damping parameter.

Here, we use it to control the radids of the trust region. A large value of
o indicates that the linear model is good. We can increassnd thereby

take longer steps, and they will be closer to the Gauss-Newton direction. If

o is small (maybe even negative) then we redicémplying smaller steps,

closer to the steepest descent direction. Below we summarize the algorithm.

We have the following remarks.
1° Initialization. xqg andA should be supplied by the user.

2°  We use the stopping criteria (3.15) supplemented with
[If (%)l < e3, reflecting thaf (x*) = 0 in case ofn =n, ie a nonlinear

system of equations.

3° If m=mn, then "~" is replaced by =", cf (3.6), and we do not use the
detour around the normal equations (3.18a); see Example 3.9.
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Algorithm 3.21. Dog Leg Method
begin
ki=0; x:i=x0; A=A g:=JIx) fx) {1°}
found:= ([[f(x)]loc <e3) or ([lg]lec <e1) {2°}

while (not found and (k < knax)
k:=k+1; Computex by (3.19)
hgq:= —ag; Solve J(x)hg, ~ —f(x) {3°}
Computehy by (3.20)
it |[hall < ex(llx[| +€2)
found:= true
else
Xnew := X + hg
0:= (F(x) = F(xnew))/(L(0) — L(hq)) {4°}
if 0>0
X = Xpew; &:=J(x) £(x)
found:= ([|£(x)] < 1) or (gl <&1)
if 0>0.75 {5°}
A = max{A, 3x||hq] }
elseif o < 0.25
A:=A/2; found:= (A <ey(||x| + €2)) {6°}
end

4° Corresponding to the three cases in (3.20a) we can show that

L(0)—L(ha) = % if hy — ﬁ o

1a(1-8)?|gll> + B(2—B)F(x) otherwise
5° Strategy (2.19) is used to update the trust region radius.

6° Extra stopping criterion. I\ < eo(||x|| + €2), then (3.15b) will surely

be satisfied in the next step.
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Example 3.9. In Example 3.6 we briefly discussed the computation of the step
hin and argued that we might as well compute it via the normal equations for-
mulation (3.13). Provided that is not very small, the matrix is reasonably well
conditioned, and there will be no excessive effects of rounding errors.

The Dog Leg method is intended perform well also on nonlinear systems of
equations, ie where (3.17) is a square system of linear equations

J(x)h = —f(x),
with the solutionh = hpnr, the Newton-Raphson step, cf Example 3.2. The Ja-
cobianJ may be ill-conditioned (even singular), in which case rounding errors

tend to dominate the solution. This problem is worsened if we use (3.18a) to
computehgn.

In the implementatiordogleg in immoptibox the solution to (3.17) is com-
puted with respect to these problems. If the columnE(af) are not significantly
linearly independent, then the least squares soldiinot unique, andhgn is
computed as thea with minimum norm. Some details of this computation are
given in Appendix B. (]

Example 3.10. Figure 3.5 illustrates the performance of the Dog Leg method
applied to Powell's problem from Examples 3.2 and 3.8 with starting point
xo = [3, 1]", Ag=1 and the stopping criteria given by =, =107'%,
£3 =107, kmax = 100.
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Figure 3.5. Dog Leg method applied to Powell’s problem.

The iteration stopped after 37 steps because of a small gradient, and retutned
[—2.41-107%°, 1.26-107°]", which is quite a good approximation 1 = 0.

As in Figure 3.3 we see that the ultimate convergence is linear (caused by the
singularJ (x*)), but considerably faster than with the Marquardt method.m
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Example 3.11. We have used Algorithm 3.21 on the data fitting problem
from Examples 1.1, 3.4 and 3.7. As in Example 3.7 we use the starting point
xo = [-1, =2, 1, —1]", and takeA, = 1 and the stopping criteria given by
e1=e2=e3=10"%, kmax = 200. The algorithm stopped after 30 iteration
steps withx ~ [—4, —5, 4, —4]". The performance is illustrated below. As in
Figure 3.3 we note a very fast ultimate rate of convergence.
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Figure 3.6. The Dog Leg method applied to the
fitting problem from Example 1.1.

The last two examples seem to indicate that the Dog Leg method is consid-

erably better than the Levenberg-Marquardt method. This is true when the

least squares problem arises from a system of nonlinear equations. The Dog
Leg method is presently considered as the best method for solving systems
of nonlinear equations.

For general least squares problems the Dog Leg method has the same dis-
advantages as the L-M method: the final convergence can be expected to be
linear (and slow) iff'(x*) # 0. For a given problem and given starting guess

Xy it is not possible to say beforehand which of the two methods will be the
faster.

3.4. A Hybrid Method: L-M and Quasi—Newton

In 1988 Madsen presented a hybrid method which combines the L-M
method (quadratic convergencéifx*) =0, linear convergence otherwise)
with a Quast-Newton method, which gives superlinear convergence, even

5) From Latin: “quasi” = “almost”. See Chapter 5 in Frandsen et al (2004) for a general
introduction to Quasi—Newton methods.
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if F'(x*)# 0. The iteration starts with a series of steps with the L-M method.
If the performance indicates th#t(x*) is significantly nonzero, then we
switch to the Quasi—Newton method for better performance. It may happen
that we get an indication that it is better to switch back to the L-M method,
so there is also a mechanism for that.

The switch to the Quasi—Newton method is made if the condition
|F/(x)]loo < 0.02 % F(x) (3.22)

is satisfied in three consecutive, successful iteration steps. This s interpreted
as an indication that we are approaching<arwith F'(x*) =0 and F'(x*)
significantly nonzero. As discussed in connection with (3.12), this can lead
to slow, linear convergence.

The Quasi—Newton method is based on having an approximBitnthe
HessiarF " (x) at the current iterate, and the stefhg, is found by solving

Bhg, = —F/(x) . (3.23)

This is an approximation to the Newton equation (2.9a).

The approximatiorB is updated by the BFGS strategy, cf Section 5.10 in
Frandsen et al (2004): EveB in the series of approximation matrices is
symmetric (as anyF ”(x)) and positive definite. This ensures thg, is
“downhill”, cf (2.10). We start with the symmetric, positive definite matrix
By =1, and the BFGS update consists of a rank 2 matrix to be added to
the currentB. Madsen (1988) uses the following version, advocated by
Al-Baali and Fletcher (1985),

h:=Xpew—x; y:= Jr1ewTJr1ewh + (Jnew* J>Tf<xnew)
if h'y >0 (3.24)

v := Bh; B::B+( T 1vv—r

hTyy)y o (hTV )
with J=J(x), Jnew = J(Xnew). As mentioned, the curre® is positive
definite, and it is changed only,Iif" y > 0. In this case it can be shown that
also the nevB is positive definite.
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The Quasi—-Newton method is not robust in the global stage of the itera-
tion; it is not guaranteed to be descenting. At the soluttdnwe have
F’/(x*) =0, and good final convergence is indicated by rapidly decreasing
values of||F/(x)||. If these norm values do not decrease rapidly enough,
then we switch back to the L-M method.

The algorithm is summarized below. It calls the auxiliary functibistep
andQNstepimplementing the two methods.

Algorithm 3.25. A Hybrid Method

begin
k:=0; x:=xq; p:=pp; B:=1 {1°}
found:= (||F/(x)|lcc <e1); method= L-M
while (not found and (k < kmax)
k= k+1
casemethodof
L-M:
[xnew; found better method. . .| := LMstep(x,...)  {2°}
Q-N:
[xnew, found better, method. . .] := QNstefix, B,...) {2°}
UpdateB by (3.24) {3°}
if better

X = Xnpew

end

We have the following remarks:

1° Initialization. uo can be found by (3.14). The stopping criteria are
given by (3.15).

2° The dots indicate that we also transfer current valuesaofdJ etc, so
that we do not have to recompute them for the same

3° Notice that both L-M and Quasi-Newton steps contribute information
for the approximation of the Hessian matrix.

The two auxiliary functions are given below,
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Function 3.26. Levenberg—Marquardt step

begin

end

[xnew, fOund better method. . .] := LMstep(x, .. .)

Xnew := X; method:= L-M
Solve (J(x)" J(x) + pD)hyy = —F/(x)
it |[hum|| < ea(llx]| + )
found:= true
else
Xnew := X + him
0= (F(x) = F(xnew))/(L(0) — L(hi)) {4°)
if 0>0
better:= true; found:= ( [|F’'(Xnew)|c < €1)
if ||F’(Xnew)|loo < 0.02 % F'(Xnew) {5°}
count:= count+1
if count=3 {6°}
method:= Q-N
else
count:=0
else

count:= 0; better.= false

We have the following remarks on the functidigstepandQNstep

40
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The gain rati is also used to updateas in Algorithm 3.16.

Indication that it might be time to switch method. The parametent
is initialized to zero at the start of Algorithm 3.25.

(3.22) was satisfied in three consecutive iteration steps, all of which had
0 >0, iex was changed in each of these steps.

3.
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Function 3.27. Quasi—Newton step
[xnew, found better method. . .] := QNstefx,B...)
begin
Xnew := X; Mmethod:= Q-N;
Solve Bhy, = —F'(x)
it [[hgnl| < e2([|x[| + £2)

better:= false

found:= true
else
if |Ihgnl| > A {7}

hgn := (A/[[hgnl[) * hgn

Xpew = X + hqn?

if || F' (Xnew)[|o < €1 {8°}
found:= true
else {9°}

better:= (F(Xnew) < F(x)) Or (F(xXnew) < (149)F(x)
and [[F' (xnew) [0 < [[F"(x)]loc)

it [|F (xnew)[[oc = [F' ()] {10°}
method:= L-M
end
7°  We combine the Quasi—Newton method with a trust region approach,

80
90

with a simple treatment of the case where the bound is active, cf
page 15f. At the switch from the L-M methafl is initialized to
max{L5ea([[x]| +€2), 5 [[mll}-

Not shown:A is updated by means of (2.19).

In this part of the algorithm we focus on gettil®y closer to zero, so
we accept a slight increase in the valuefgfegé = /ey, wheregy
is the computer’s unit roundoff.

10° The gradients do not decrease fast enough.



39 3. LEAST SQUARESPROBLEMS

Example 3.12. Notice that in the updating formula (3.24) the computation of
y involves the produc (x)" f(xnew). This implies that we have to store the
previous Jacobian matrix. Instead, we could use

y = F'(xnew) —F'(x) = gnew—g
in the updating formula, but Madsen (1988) found that (3.24) performs better.

The trust region approach in the Q—N step was not included in Madsen (1988),
but during the development of themoptibox functionnlshybrid  this idea

was found to improve the performance. It reduced the number of times that a
Q-N step was tried in vain, ie the conditionld® immediately returned to the
L—M method. n

Example 3.13. This hybrid method will not outperform Algorithm 3.16 on the
problems discussed in Examples 3.7 and 3.8. In the latter case (see Figure 3.3)
F(x)—0, and the switching condition at remak will never be satisfied. In the
former caseF'(x") is significantly nonzero, but — as discussed in Example 3.7
— the simple L-M method has the desired superlinear final convergence.

To demonstrate the efficiency of Algorithm 3.25 we consider the mod«skn-
brock problemgcf Example 5.5 in Frandsen et al (1999), givenfoyR? — R3,
10(x2 — x3)
f(x) = 11— ,
A

where the parameter can be chosen. The minimizer 6f(x) = 1f(x)" f(x)

isx* =[1, 1]" with F(x*) = )%

Below we give results for Algorithms 3.16 and 3.25 for some values o all
cases we usg, = [—1.2, 1]7, the initial damping parametgr, defined by
7=10"%in (3.14), and(e1, 2, kmax) = (1071, 107** 200) in the stopping
criteria (3.15).

In the first two cases is too small to really influence the iterations, but for the

larger A\-values we see that the hybrid method is much better than the simple
Levenberg—Marquardt algorithm — especially as regards the accuracy obtained.

In Figure 3.7 we illustrate the performance of the two algorithms in the case
A= 10"
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Algorithm 3.16 | Algorithm 3.25
A its | [[x—x*|| | its | |lx—x"|
0 17 | 2.78e-12 17 | 2.78e-12

1075 17 | 2.78e-12 17 | 2.78e-12
1 24 | 1.69e-09 19 | 2.23e-14

10 | 23 | 5.87e-07 | 22 | 3.16e-12
10% 23 | 2.37e-04 22 | 3.16e-12

8 8

10 T O T O I T I TsT 10 D2 0+0 10 0 ORGSR G OGRS a1 0 a1 ST S G xS RR
O
10" o 10
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Figure 3.7. Levenberg—Marquardt’s method (left) and the hybrid method (right)

With the L—-M method all steps after no. 15 fail to improve the objective function;
1 increases rapidly, and the stopping criterion (3.15b) is satisfied at step no. 23.

With the hybrid method there are several attempts to use the Quasi—Newton
method, starting at step nos. 5, 11 and 17. The last attempt is successful, and
after 22 steps the iteration is stopped by (3.15a). n

3.5. A Secant Version of the L-M Method

The methods discussed in this booklet assume that the vector fufigson
differentiable, ie the Jacobian
Ofi
J =

() {5%}
exists. In many practical optimization problems it happens that we cannot
give formulae for the elements ih eg becausé is given by a “black box”.
The secant version of the L—-M method is intended for problems of this type.
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The simplest remedy is to repladéx) by a matrixB obtained bynumerical
differentiation The (4, 7)™ element is approximated by the finite difference
approximation

ofi . Jilxtde;) — fi(x)
833j (X) o ](5

wheree; is the unit vector in thgth coordinate direction andlis an ap-
propriately small real number. With this strategy each itexateedsi+1
evaluations off, and since) is probably much smaller than the distance
|lx — x*||, we do not get much more information on thiebal behavior of

f than we would get from just evaluatifgx). We want better efficiency.

Example 3.14. Letm =n =1 and consider one nonlinear equation
f:R—R. Findz such thatf(z) = 0.
For this problem we can write the Newton—Raphson algorithm (3.6) in the form
fla+h) = h) = f(z)+ f(x)h
solve the linear problent(h) = 0 (3.29)
Tnew: =T+ h
If we cannot implement’(z), then we can approximate it by
(f(z+6) — f(x))/0
with § chosen appropriately small. More generally, we can replace (3.29) by
f(z+h) = A(h) = f(z)+bh with b~ f'(z)
solve the linear problem\(h) = 0 (3.30a)
Thew: =T+ h

Suppose that we already knawyrey and f (zprev). Then we can fix the factdr
(the approximation tg” (x)) by requiring that

f(xprev) = )\(xprev_ x) . (3.30b)

This gives b = (f(z) — f(@prev)) /(z — prev) , and with this choice ob
we recognize (3.30) as theecant methadsee eg pp 70f in Ekh et al (2004).
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The main advantage of the secant method over an alternative finite difference
approximation to Newton—Raphson’s method is that we only need one function
evaluation per iteration step instead of two. (]
Now, consider the linear model (3.7a) fibor R” — R™,
f(x+h) ~ £(h) = f(x)+J(x)h.
We will replace it by
f(x+h) ~ A(h) = f(x) + Bh,

whereB is the current approximation tb(x). In the next iteration step we
needB ey SO that

f(XnewJFh) x~ f(Xnew) + Bhewh .
Especially, we want this model to hold with equality for= x—xpey, i€

f(x) = f(Xnew) + Bnew(X—Xnew) - (3.31a)

This gives usn equations in then-n unknown elements oBpey, SO We
need more conditions. Broyden (1965) suggested to supplement (3.31a)
with

Brewv = Bv forall v L (x—Xpew) - (3.31b)

It is easy to verify that the conditions (3.31a-b) are satisfied by

Definition 3.32. Broyden’s Rank One Update

Bnew = B + uhT
where
1
~ h'h

h=Xpew—x, u

(f(xnew) — f(x) — Bh) .

Note that condition (3.31a) corresponds to the secant condition (3.30b) in
the caser = 1. We say that this approach igyaneralized secant method

A brief sketch of the central part of Algorithm 3.16 with this modification
has the form
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solve (B"B + pI)hgm = —B'f(x)
Xnew := X + hgim

UpdateB by (3.32)

Updaten, andx as in Algorithm 3.16

Powell has shown that if the set of vectats, x1,x5,... converges to
x* and if the set of step§h, = x,—x;_1} satisfy the condition that
{hg—n+1,...,h} are linearly independent (they span the whole &f) R
for eachk > n, then the set of approximatiof8} converges taJ(x*),
irrespective of the choice @,.

In practice, however, it often happens that the previogteps daot span

the whole of R, and there is a risk that after some iteration steps the current
B is such a poor approximation to the true Jacobian matrix,tt f (x)

is not even a downhill direction. In that casewill stay unchanged and

1 is increased. The approximatid® is changed, but may still be a poor
approximation, leading to a further increaseijretc. Eventually the process

is stopped byhgy, being so small that (3.15b) is satisfied, althougmay

be far fromx*.

A number of strategies have been proposed to overcome this problem, eg
to make occasional to recomputationsBby finite differences. In Algo-
rithm 3.34 below we supplement the updatings determined by the course
of the iteration with a cyclic, coordinate-wise series of updatings: H_et
denote the current step, and Jebe the current coordinate number. If the
angled betweenh ande; is “large”, then we compute a finite difference
approximation to thg™ column ofJ. More specific, this is done if

|h'e;|

cos) = ——
[hf - [le;l

<v & Inyl < Al (3.33)

Experiments indicated that the (rather pessimistic) cheicd).8 gave good
performance. With this choice we can expect that each iteration step needs
(almost) two evaluations of the vector functifin

Now we are ready to present the algorithm. The monitoring of the damping
parametey: is as in Algorithm 3.16, and for the sake of clarity we omit itin
the presentation.
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Algorithm 3.34. Secant Version of the L-M Method

begin
k:=0; x:=x9; B: =By j:=0 {1°}
g:=B'f(x); found= (|lg]e <e1)
while (notfound and (k¥ < kmax)
k:=k+1; Solve(B'B+ ul)h=—g
it | < ex(]lefl +e2)

found:= true
else
j =modj,n)+1; if |h;| <0.8|h] {2°}
UpdateB by (3.32), usingtpew = X + 1€ {3°}

Xnew := X + h;  UpdateB by (3.32)
if F(Xnew) < F(x)
X = Xnew
g :=Bf(x); found:= (|lglec <e1) {4°}
end

We have the following remarks:

1° Initialization. xg is input andBy, is either input or it is computed by
(3.28). Also the parameters in the stopping criteria (3.15) and the step
0 to use in (3.28) are input values.

2° Cf(3.33). modj, n) is the remainder after division by.

3° The step is given by
if x; =0 then n:=4? elsen = d|z;].

4° Whereas the iterate is updated only if the descending condition (2.1)
is satisfied, the approximatidB is updated in every step. Therefore
the approximate gradiegtmay change also whefi{x) is unchanged.

Example 3.15. We have used Algorithm 3.34 on the modified Rosenbrock problem
from Example 3.13 withh = 0. If we use the same starting point and stopping
criteria as in that example, and tafe=10"" in the difference approximation



45 3. LEAST SQUARESPROBLEMS

(3.28), we find the solution after 29 iteration steps, involving a total of 53 evalu-
ations off(x). For comparison, the “true” L—M algorithm needs only 17 steps,
implying a total of 18 evaluations df{x) and J(x).

We have also used the secant algorithm on the data fitting problem from Exam-
ples 1.1, 3.7 and 3.11. With=10"" and the same starting point and stopping
criteria as in Example 3.7 the iteration was stopped by (3.15a) after 94 steps,
involving a total of 192 evaluations df(x). For comparison, Algorithm 3.16
needs 62 iteration steps.

These two problems indicate that Algorithm 3.34 is robust, but they also illustrate
a general rule of thumb: If gradient information is available, it normally pays to
use it. (]

In many applications the numbews andn are large, but each of the func-
tions f;(x) depends only on a few of the elementsinIn that case most

of the ng;(x) are zero, and we say thd{x) is a sparse matrix There

are efficient methods exploiting sparsity in the solution of the Levenberg—
Marquardt equation (3.13), see eg Nielsen (1997). In the updating formula
(3.32), however, normally all elements in the vecthrandu are nonzero,

so thatBew Will be adense matrixlt is outside the scope of this booklet to
discuss how to cope with this; we refer to Gill et al (1984) and Toint (1987).

3.6. A Secant Version of the Dog Leg Method

The idea of using a secant approximation to the Jacobian can, of course,
also be used in connection with the Dog Leg Method from Section 3.3. In
this section we shall consider the special caseef n, ie in the solution of
nonlinear systems of equations. Broyden (1965) not only gave the formula
from Definition 3.32,

1 T
Brew = B+ (ﬂ(y - Bh)) h (3.35a)
Where h = Xpew — X, Yy = f(Xnew) - f(X) 5

for updating the approximate Jacobian. He also gave a formula for updating
an approximate inverse of the JacobiBny~ J(x)~!. The formula is
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_ R T
Dyew = D + (hTDy (h Dy)> (W' D), (3.35b)

whereh andy are defined in (3.35a).

With these matrices the steepest descent dirediignand the Gauss—
Newton step (which is identical with the Newton step in this case, cf Ex-
ample 3.5y, (3.18) are approximated by

hssg= —B'f(x) and hggp= —Df(x). (3.36)

Algorithm 3.21 is easily modified to use these approximations. The initial
B =B, can be found by the difference approximation (3.28), Braccom-
puted angl. It is easy to show that then the currddtand D satisfy
BD =1. The step parameteris found by (3.19) withJ (x) replaced byB.

Like the secant version of the L—M method, this method needs extra updates
to keepB andD as good approximations to the current Jacobian and its
inverse. We have found that the strategy discussed around (3.33) also works
well in this case. It should also be mentioned that the denominator in (3.35b)
may be zero or very small. If

Ih'Dy < e |[h],
thenD is not updated, but computed Bs= B~!.

Each update with (3.35) “costs0n? flops® and the computation of the
two step vectors by (3.36) plus the computatiomolby (3.19) cost$n?

flops. Thus, each iteration step with the gradient—free version of the Dog
Leg method costs abowién? flops plus evaluation df(xnew). For compar-

ison, each step with Algorithm 3.21 costs <':lb§lnt3+6n2 flops plus evalu-
ation of f(xpew) and J(xnew). Thus, for large values of the gradient-free
version is cheaper per step. However, the number of iteration steps is often
considerably larger, and if the Jacobian matrix is available, then the gradient
version is normally faster.

6) One ‘flop” is a simple arithmetic operation between two floating point numbers.



47 3. LEAST SQUARESPROBLEMS

Example 3.16. We have used Algorithm 3.21 and the gradient—free Dog Leg
method orRosenbrock’s functiofi : R%—R?, given by
~ [10(z2 — =?)
oo = | ]
cf Example 3.13. The function has one rosf, = [1, 1]7, and with both
methods we used the starting poikg = [—1.2, 1]" ande; =2 =10""2,
Emax = 100 in the stopping criteria (3.15), andl=10"" in (3.28). Algo-
rithm 3.21 stopped at the solution after 17 iteration steps, ie after 18 evaluations
of f and its Jacobian. The secant version also stopped at the solution; this needed
28 iteration steps and a total of 49 evaluation$.of n

3.7. Final Remarks

We have discussed a number of algorithms for solving nonlinear least
squares problems. All of them appear in any good program library, and
implementations can be found via GAMS (Guide to Available Mathemati-
cal Software) at the Internet address

http://gams.nist.gov

The examples in this booklet were computed imMMAB. The programs
are available in the toolbaxmmoptibox, which can be obtained from

http://www.imm.dtu.dk/~hbn/immoptibox

Finally, it should be mentioned that sometimes a reformulation of the prob-
lem can make it easier to solve. We shall illustrate this claim by examples,
involving ideas that may be applicable also/ur problem.

Example 3.17. In Powell’s problem from Examples 3.2, 3.8 and 3.10 the variable
x2 occurs only as:3. We can introduce new variables= [z, 3], and the
problem takes the form: Fina" € R? such thaf (z*) = 0, where

z21

f(z) = Lj%{l +2zQ} with — J(z) = {(zﬁé.l)*? g} '

This Jacobian is nonsingular for &l The L-M algorithm 3.16 with starting
pointzo = [3, 1]", 7=10""% ande; =, = 10~'® in the stopping criteria
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(3.15) stops after 3 steps with~ [-1.40e-25 , 9.77e-25 |'. This is a good
approximation te* = 0. (]

Example 3.18. The data fitting problem from Examples 1.1, 3.7 and 3.11 can be
reformulated to have only two parameters,andzs: We can write the model
in the form

xqt xot
M(x,t) = c1e™" + c2e™",

where, for givenx, the vectorc = c¢(x) € R? is found as the least squares solu-
tion to the linear problem

Ec >~ y,
with E = E(x) € R™*? given by the rowgE);: = [e*!" e®2"]. Asin Ex-
ample 1.1 the functiofi is defined byf;(x) = y; — M (x,t;), leading to
f(x) =y — E(x)c(x).
It can be shown that the Jacobian is
J = -EG - H|],
where, for any vecton we define the diagonal matrjx] = diag(u), and
H=[tE, G=EE" ([HTf] - HTE[CD .

Algorithm 3.16 with the same poor starting guess as in Examplex3, 7=
[—1, —2]", 7=10"% ande; = g2 = 10~ ® finds the solutionx ~ [—4, —5]"
after 13 iteration steps; abo%t of the number of steps needed with the 4-
parameter model.

This approach can be generalized to any model, where some of the parameters
occur linearly. It has the nanmseparable least squareand is discussed eg in
Nielsen (2000) and Golub and Pereyra (2003). n

Example 3.19. The final example illustrates a frequent difficulty with least squares
problems: Normally the algorithms work best when the problem is scaled so that
all the (nonzero)z;| are of the same order of magnitude.

Consider the so-calleleyer’s problem

T2 .
(%) = i — . i=1,...,16,
fi(x) =yi — x1exp <ti+$3) i
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with t; =45+5¢ and

7 Yi 7 Yi ) Yi
1134780 | 7 | 11540 | 12 | 5147
2128610 | 8 | 9744 | 13 | 4427
3123650 | 9 | 8261 | 14 | 3820
4119630 | 10 | 7030 | 15 | 3307
5116370 | 11 | 6005 | 16 | 2872
6 | 13720

The minimizer isx* ~ [ 5.61-107% 6.18-10° 3.45.10%] " with
F(x*) = 43.97.

An alternative formulation is
— 102’2
i(x) =107y — —
.0 =107y = sy exp 12
with u; = 0.45+0.054. The reformulation corresponds to
z=[10"%"%z; 10 %z, 10*2x3]T, and the minimizer is
2"~ [248 6.18 3.45]  with &(x") =~ 4.397-107°,

If we use Algorithm 3.16 withr =1, &1 =107°, &5 = 107 !° and the equivalent
starting vectors

—13), i=1,...,16,

xo=[210"2 410° 2.510%]", 20=[885 4 25],

then the iteration is stopped by (3.15b) after 175 iteration steps with the first
formulation, and by (3.15a) after 88 steps with the well-scaled reformulasion.

APPENDIX

A. Symmetric, Positive Definite Matrices

The matrixA € R"*" is symmetric ifA = AT, ie if a;; = a;; for all , 5.

Definition A.1. The symmetric matribA € R"*" is
positive definite if x"Ax>0 forall x€R", x#£0,
positive semidefiniteif x'Ax >0 forall x€R", x#0.

Some useful properties of such matrices are listed in Theorem A.2 below. The proof
can be found by combining theorems in almost any textbooks on linear algebra and
on numerical linear algebra. At the end of this appendix we give some practical

implications of the theorem.
Now, letJ € R™*™ be given, and let
A=17J7J.
ThenAT =J"(J7)" = A, ie A is symmetric. Further, for any nonzexes R™ let
y=Jx. Then
x Ax=x'J Jx= yTy >0,
showing thatA is positive semidefinite. lin >n and the columns id are linearly

independent, ther £0 = y#0 andy'y >0. Thus, in this casé\ is positive
definite.

From (A.3) below follows immediately that
A+pDv; = +p)v;, j=1,....n

for anyu € R. Combining this with2° in Theorem A.2 we see thatX is symmetric
and positive semidefinite and> 0, then the matrixA+uI is also symmetric and it
is guaranteed to be positive definite.
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A=LU=LDL'=C'C,

Theorem A.2. Let A € R"*" be symmetric and leA = LU, where ,
showing that

L is a unit lower triangular matrix an®J is an upper triangular matrix.

Further, let{(A;,v;)}_; denote the eigensolutions &f, ie Cc=D"?L", with D'? = diag\/uz).
] The Cholesky factorization can be computed directly (ie without the intermediate
Av; = \jvj, j=1,...,n. (A.3) resultsL, and U) by the following algorithm, that includes a test for positive defi-
niteness.
Then
1° The eigenvalues are real; € R, and the eigenvectorsv; } form Algorithm A.4. Cholesky Factorization
an orthonormal basis of'R begin
2° The following statements are equivalent k := 0; posdef= true {Initialisation}

a) A is positive definite (positive semidefinite) Wh,;'?_p:i?fan; k_<a:; v,
T ) T i=1 “i
b) Al A\; >0 (A;>0) if d>0 {test for pos. de}.

crr = Vd {diagonal element
€) All uii >0 (ui; 20). for j:=k+1,...,n

If A is positive definite, then Crj = (akj -k cijcik) /Crkc {superdiagonal elemerjts
3° The LU-factorization is numerically stable. else

R . . posdef.= false
4° U = DL with D = diag(u;). end

5° A = CTC, theCholesky factorizationC € R"*" is upper trian-

gular The “cost” of this algorithm is aboutn® flops. OnceC is computed, the system

Ax =b can be solved by forward and back substitution in
C'z=b and Cx=1z,
respectively. Each of these steps costs abdiftops.

Thecondition numbenf a symmetric matriA is
k2(A) = max{|;[}/ min{|A;} .
If A is positive (semi)definite and > 0, then
max{\;} +p _ max{A;}+p

B. Minimum Norm Least Squares Solution

Consider the least squares problem: Giveg R™*"™ with m >n andb € R™, find

Al = h € R" such that
K2 (A+pul) min{\ ) L p L ) e
and this is a decreasing function of - _|| - I _ _ -
Finally, some remarks on Theorem A.2 and practical detailsini lower trian- is minimized. To analyze this, we shall use giegular value decompositiqi$VD)
o T ; i L of A,
gular matrix L is characterized by;; = 1 and¢;; = 0 for j>i. Note, that the A-USV 7 (B.1)

LU-factorizationA = LU is madewithout pivoting. Also note that point4°—5°
give the following relation between the LU- and the Cholesky-factorization where the matrice®J € R""*™ andV € R"*" are orthogonal, and
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01
3= on with 01> --- >0, >0, Opy1 =+ =0p =

0

The o; are thesingular values The numbep is therank of A, equal to the di-
mension of the subspa@®(A)CR™ (the so-calledangeof A) that contains every
possible linear combination of the columnsAf

Let {u;}jL, and{v;}}_; denote the columns iV andV, respectively. Since the
matrices are orthogonal, the vectors form two orthonormal sets, ie

T T 1, 1=y,
Willy = Vivj = { 0, otherwise. (B.2)
From (B.1) and (B.2) it follows that
p
A = ZO'J‘U]‘VJ‘ and Avy = opug, k=1,...,n. (B3)

Jj=1

The{u,} and{v;} can be used as orthonormal bases i &d R’, respectively,
SO we can write

m

b = Zﬁjllj, h = Znivi7 (B-4)
j=1 i=1

and by use of (B.3) we see that
p

r=b-Ah =) (8 —om)u+ > By,
j=1 Jj=p+1
and by means of (B.2) this implies

p m
o) = r'e = > (B —oym)’+ D B (B.5)
Jj=1 Jj=p+1

This is minimized when

/6]'70.]'77]':07 .]: yerey D -
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Thus, the least squares solution can be expressed as

P n
h* :Z%V]‘—I— Z niVj .
j=1 "7 j=p+1

Whenp < n the least squares solution has p degrees of freedomy,11, ..., 7,

are arbitrary. Similar to the discussion around (B.5) we seel||th&} is minimized
whenn,y+1 = -+ =n, =0. The solution corresponding to this choice of the free
parameters is the so-callednimum norm solution,

hmin - / O__jvj - Z o Vi

§= j=1

The reformulation follows from (B.4) and (B.2).
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