Basic Probability Rules

Cyrill Stachniss

1 Basic Axioms

\[0 \leq p(x) \leq 1 \] \hspace{1cm} (1)

\[p(true) = 1 \text{ and } p(false) = 0 \] \hspace{1cm} (2)

\[p(x \lor y) = p(x) + p(y) - p(x \land y) \] \hspace{1cm} (3)

2 Complement Probability

\[p(\neg x) = 1 - p(x). \] \hspace{1cm} (4)

3 Product Rule

The following equation is called the product rule

\[p(x, y) = p(x \mid y) \cdot p(y) \] \hspace{1cm} (5)

\[= p(y \mid x) \cdot p(x). \] \hspace{1cm} (6)

4 Independence

If \(x \) and \(y \) are independent, we have

\[p(x, y) = p(x) \cdot p(y). \] \hspace{1cm} (7)

5 Bayes’ Rule

The Bayes’ rule, which is frequently used in this thesis, is given by

\[p(x \mid y) = \frac{p(y \mid x) \cdot p(x)}{p(y)}. \] \hspace{1cm} (8)

The denominator is a normalizing constant that ensures that the posterior of the left hand side adds up to 1 over all possible values. Thus, we often write

\[p(x \mid y) = \eta \cdot p(y \mid x) \cdot p(x). \] \hspace{1cm} (9)

In case the background knowledge \(e \) is given, Bayes’ rule turns into

\[p(x \mid y, e) = \frac{p(y \mid x, e) \cdot p(x \mid e)}{p(y \mid e)}. \] \hspace{1cm} (10)
6 Marginalization

The marginalization rule is the following equation

\[p(x) = \int y p(x, y) \, dy. \] \hfill (11)

In the discrete case, the integral turns into a sum

\[p(x) = \sum_y p(x, y). \] \hfill (12)

7 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be derived using the product rule

\[p(x) = \int y p(x \mid y) \cdot p(y) \, dy, \] \hfill (13)

and the corresponding sum for the discrete case

\[p(x) = \sum_y p(x \mid y) \cdot p(y). \] \hfill (14)

8 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact that a variable \(x_t \) depends only on its direct predecessor state \(x_{t-1} \) and not on \(x_{t'} \) with \(t' < t - 1 \)

\[p(x_t \mid x_{1:t-1}) = p(x_t \mid x_{t-1}). \] \hfill (15)