Robot Mapping

Sparse Extended Information
Filter for SLAM

Gian Diego Tipaldi, Wolfram Burgard

Reminder: Parameterizations
for the Gaussian Distribution

moments canonical

covariance matrix information matrix
mean vector information vector

Motivation

o
e
Gaussian normalized normalized
estimate covariance information
(map & pose) matrix matrix

Courtesy: Thrun, Burgard, Fox

Motivation

small but
non-zero

normalized information matrix
Courtesy: Thrun, Burgard, Fox 4

Most Features Have Only a
Small Number of Strong Links

. robot features
link active passive

normalized information matrix

Courtesy: Thrun, Burgard, Fox g

Information Matrix

= [nformation matrix can be interpreted
as a graph of measurements/”links”
between nodes (variables)

= Can be interpreted as a MRF

= Missing links indicate conditional
independence of the random variables

= ();; tells us the strength of a link
= Larger values for nearby features

= Most off-diagonal elements in the
information are close to 0 (but #0)

Create Sparsity

= "Set” most links to zero/avoid fill-in

= Exploit sparseness of () in the
computations

= sparse = finite number of non-zero
off-diagonals, independent of the
matrix size

Effect of Measurement Update
on the Information Matrix

Lt 111213 T
o [G
T
1% *
s Kl o *

before any observations

Effect of Measurement Update
on the Information Matrix

Lt M11MM2 13 T

\

robot observes landmark 1

Effect of Measurement Update
on the Information Matrix

Lt M11MM2 13 T

robot observes landmark 2
10

Effect of Measurement Update
on the Information Matrix

= Adds information between the robot’s
pose and the observed feature

Lt 1M11Mo M3 Lt 1M1 Mo 13
7 [
m1

%

ms3

Effect of Motion Update on the
Information Matrix

Lt 111213 T

before the robot’'s movement
12

Effect of Motion Update on the
Information Matrix

Lt4+1 1701 119 1113

Lt4+1
Lt+1
m1
o
m m
’ ml ’ ﬁg

after the robot’'s movement
13

Effect of Motion Update on the
Information Matrix

Lt4+1 1701 119 1113

Lt4+1
Lt+1
m1
o
m m
’ ml ’ ﬁg

effect of the robot’'s movement
14

Effect of Motion Update on the
Information Matrix

= Weakens the links between the robot’s
pose and the landmarks

» Add links between landmarks

Lt M1 M9 M3 Lt++1 1701 112 N3

Lt41
' mi
m2

3

15

Sparsification

Lt+1 7101 112 1113

Lti1
Lt+1
mi
o
m m

before sparsification
16

Sparsification

Lt+1 7101 112 1113

Lti1
Li+1 _
mi T
o
m m

before sparsification
17

Sparsification

Lt+1 11011213 Tit1

Lt+1

R

removal of the link between m{ and Z¢+1
18

Sparsification

Lt4+1 1701 119 1113

Lt4+1
Lt+1
m1
o
m m
’ ml ’ Kg

effect of the sparsification
19

Sparsification

= Sparsification means “ignoring” links
(assuming conditional independence)

= Here: links between the robot’s pose
and some of the features

Lt+1 7101 112 113 Lt+1 7101 112 113

Lt41

m)
mo

Lt4+1

ms3 ms3

20

Active and Passive Landmarks

Key element of SEIF SLAM to obtain an
efficient algorithm

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

21

Active vs. Passive Landmarks

Lt+1 11011213 Ti41

Lt4+1

ms mq ma2 *
active mg

was active, _
NnOwW passive passive

22

Sparsification in Every Step

= SEIF SLAM conducts a sparsification
steps In each iteration

Effect:

= The robot’s pose is linked to the active
landmarks only

= Landmarks have only links to nearby
landmarks (landmarks that have been
active at the same time)

23

Key Steps of SEIF SLAM

1. Motion update
2. Measurement update
3. Sparsification

24

Four Steps of SEIF SLAM

1. Motion update

2. Measurement update

3. Update of the state estimate
4. Sparsification

The mean is needed to apply the
motion update, for computing an
expected measurement and for
sparsification

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

4, Qy, iy = SEIF _motion_update(&_1, Qe_1, fte—1, Us)
ft, (), = SEIF_measurement update(ft, Qs i, 2t)

= SEIF _update_state_estimate(&;, {1y, ji4)
ft, Q, = SEIF _sparsification(&;, ¢,)

return &, Qt [t

Note: we maintain &, {2, Ly

26

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

4, Qy, iy = SEIF _motion_update(&_1, Qe_1, fte—1, Us)
§t, (), = SEIF_measurement update(ft, Qs i, 2t)

= SEIF _update_state_estimate(&;, {1y, ji4)
ft, Q, = SEIF _sparsification(&;, ¢,)

return &, Qt [t

The corrected mean puyis
estimated after the measurement
update of the canonical &, ()
parameters

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—h Mt—1, U, Zt).'

‘ &, Q4, iy = SEIF _motion_update(&—1, 1, pe—1, ut)
2: &, Q) = SEIF _measurement_update(&;, €y, jit, 2¢)

3: 1 = SEIF _update_state_estimate(&;, €2y, ji4)
4: &, Q) = SEIF _sparsification(&;, €, 1)
5: return &, s, Ly

28

Matrix Inversion Lemma

= Before we start, let us re-visit the
matrix inversion lemma

= For any invertible quadratic matrices R
and Q and any matrix P, the following
holds:

(R+PQP") ' =
R—l _R—l P (Q_l _I_PT R—l P)—l PT R—l

29

SEIF SLAM - Prediction Step

= Goal: Compute &, 9y, i; from motion
and the previous estimate &—1, 1, 11

= Efficiency by exploiting sparseness of
the information matrix

30

Let us start from EKF SLAM...

EKF_SLAM _Prediction(u;—1, ¢ 1, Ut, 2, R¢):
1 0 0 0---0

_ Ut o3 Yt &
Sbsinp—1,9 + sin(pe—1,0 + wiAt)

30 =1+ FL Z:—’i COS flt—1.0 — Z—i cos(p—1,0 + wiAt)
tht
0
0
0

0 —z—i COS ut_l,g—l—Z—i cos(pt—1,0 + wiAt)
0 —z—’i sin ut_1,9+5—i sin(pe—1,0 + wiAt)
0 0

5. Yy =G Y1 GT+FI' R* F,

7

R

31

Let us start from EKF SLAM...

EKF_SLAM _Prediction(u;—1, ¢ 1, Ut, 2, R¢):
1 0 0 0---0

-0 / copy & paste

—Z—i sin pii—1.0 + z—i sin(pe—1,0 + wiAt)
Z:—’i COS [l1—1.0 — Z—i cos(p—1,0 + wiAt)
tht Ccopy

Y

0 -k cos ut_l,g—l—Z—i cos(pt—1,0 + wiAt)
0 —z—’i sin ut_1,9+5—i sin(pe—1,0 + wiAt)
0 0 copy

5. Yy =G Y1 GT+FI' R* F,

7

R

paste

F,
paste

32

Let us start from EKF SLAM...

EKF_SLAM _Prediction(u;—1, ¢ 1, Ut, 2, R¢):
1 0 0 0---0

-0 / copy & paste

—Z—i sin pii—1.0 + z—i sin(pe—1,0 + wiAt)

30 =1+ FL (Zj—’i COS [bt—1,0 — Z—i cos(p—1,0 + wiAt)
we At copy

0

0

0

(0

0 —gFcos ut_l,g—l—Z—i cos(pt—1,0 + wiAt)
0 —z—’i sin ut_1,9+5—i sin(pe—1,0 + wiAt)
0 0 copy
5. X =G Y1 G+ FF RY F,

7

'
1

paste

F,
pas

te

_'_Rl

let’s begin with computing the information matrix... 33

SEIF - Prediction Step (1/3)

Algorithm SEIF _motion_update(&_1, 21, tht—1, uz):
1 0 0 0---0
0 g | 0 10 0--:0
O 01 0---0
N——
ON
—Z—i sin pe—1.0 + Z—i sin(pe—1.0 + wiAt)
3 6= Z—i COS flt—1,9 — Z—i cos(pt—1,0 + wiAt)
tht
0 0 Z—i COS [l1—1,0 — Z—i cos(pr—1,0 + wiAt)
4: A= 0 0 Z_i sin fig—1.0 — z—i sin(pe—1.0 + wiAt)
0 O 0

34

Compute the Information Matrix

= Computing the information matrix

Qt — E_Zt_l
= (G, GT+ R
= [®;' + Ry] !

= with the term ¢, defined as

_ —1
(:Dt — [Gt Qt_ll G;}F}
= Gy Q1 G

35

Compute the Information Matrix

= We can expand the noise matrix R

O = [o7'+ R

= [o;'+FT R’ F,]

36

Compute the Information Matrix

= Apply the matrix inversion lemma

- —1
O = [0+ Ry]
= [®,' +F, R} F]
= &, -0, FI(RF'+F, &, FI)"1 F, &,

—1

3x3 matrix

37

Compute the Information Matrix

= Apply the matrix inversion lemma

- —1
O = [0+ Ry]
= [®,' +F, R} F]
= &, -0, FI(RF'+F, &, FI)"1 F, &,

T 3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

—1

38

Compute the Information Matrix

= Apply the matrix inversion lemma

QO = [®;'+R]

= [®,' +F, R} F]

= &, -0, FI(RF'+F, &, FI)"1 F, &,
1‘ 3x3 matrix 1‘

Zero except Zero except
3x3 block 3x3 block

= Constant complexity if o IS sparse
and “bounded”! g N

—1

Compute the Information Matrix

= This can be written as

- —1
QO = [0+ Ry]
= [07' + F, R} F,]
= &, -, FI(RF '+ F, o, FIY"1 F, &,
- .\ ——_—

K

—1

— q)t—ﬁlt

= Question: Can we compute &,
efficiently (&, = [GT]7' Q,_1 G;1)?

40

Computing @, = [GT]7' Q1 G/

= Goal: constant time if ©;_ is sparse

41

Computing @, = [GT]7' Q1 G/

= Goal: constant time if ;_; is sparse
Gt = (I+FI'AFE)™!

- ()
[

3x3 identity 2Nx2N identity

42

Computing @, = [GT]7' Q1 G/

= Goal: constant time if ;_; is sparse
Gt = (I+FI'AFE)™!

A+I; 0 \ '
0 Ion
(A+Ig)_1 0
0 Ion

holds for all block matrices where
the off-diagonal blocks are zero

43

Computing @, = [GT]7' Q1 G/

= Goal: constant time if ;_; is sparse
Gt = (I+FI'AFE)™!

A+I; 0 \ |
0 Ion
(A+Ig)_1 0
0 Ion

(A+I3)" 1 —1I3 0)

—]3_|_2N_|_ (f O O

Note: 3x3 matrix

Computing @, = [GT]7' Q1 G/

= Goal: constant time if ;_; is sparse
Gt = (I+FI'AFE)™!

A+I; 0 \ |
0 Ion
(A—|—13)_1 0
0 Ion

A+I3)"t—1I3 0
=]3+2N+<(3()) 3 O)

= IT+F'[(I+A)'—1F,

J/

iV

Wy
— I—F\I]t

45

Computing @, = [GT]7' Q1 G/

= \We have
G,l=I+7, G ' =14 0!

= with
U, =F [(I+A)"!'—1]F,

3x3 matrix

= I, is zero except of a 3x3 block
= G, 'is an identity except of a 3x3 block

46

Computing @, = [GT]7' Q1 G/

Given that:

» G;tand [GF]7! are identity matrices
except of a 3x3 block

= The information matrix is sparse
= This implies that

¢, = [GT]7 4 Gy

= can be computed in constant time

47

Constant Time Computation of o,

= Given (2;_; is sparse, the constant time
update can be seen by

by

G G
(I + qu) Q1 (L + Uy)
1+ ‘I’rf Qp1+ Q1 Yy + ‘I’;}r Q1 Uy

At

Qi1+ M

all elements zero except a
constant number of entries

48

Prediction Step in Brief

= Com
= Com
= Com
= Com
= Com

pute v,

bute A\; using W,
bute @, using A
nute K+ using &,

bute); using @, and Ky

49

SEIF - Prediction Step (2/3)

SEIF _motion_update(&; 1,91, phe—1, us):

20 Fp=---

3 o=---

4: A=--.

5. U, =Fl'[(I+A)-1IF,

6: =9 1+ 1V, +V] Q4 T,
7 (I)t:Qt—l_l_)\t

8 Kk =®, FI(R;'+F, & FI)"1' F, ®,
9: Qt:q)t_/{'t

Information matrix is computed, now do the
same for the information vector and the mean

50

Compute the Mean

= The mean is computed as in the EKF
e = 1+ F, 0

= Reminder (from SEIF motion update)

1 0 0 0---0
). Fx(o 1 0 0-~0)
0 0 1 0---0

N——

2N

(—Zbsinpg1,9 + 25 sin(pe—1,0 +weAf))
3 0=

Yt _ Ut
o, COSHt—-10 — cos(fit—1,0 + wiAt)

Wt At

51

Compute the Information Vector
= We obtain the information vector by

&

= (Mt—l‘l‘Fg Ot)

= O (1 &1+ F) 0y)

52

Compute the Information Vector

= We obtain the information vector by
3

= O (-1 +F; o)

= O (2 &+ Fy o)

= Qt__ll &1+ F;;F Ot

53

Compute the Information Vector

= We obtain the information vector by

&

Y (-1 + F, ;)

Qp (2 &1 + Fy &)

Oy Qt__ll &1+ F;;F Ot

(4 —P¢ + (I)E:Qt—l + Qt—£) Qt__ll &1+ Fg Ot

—0 0

54

Compute the Information Vector

= We obtain the information vector by

= Q (-1 + F, 0y)

= O (2 &+ Fy o)

= Qt__ll &1+ F;;F Ot

= (Qt :(I)t + (I)E:Qt—l + Qt—£) Qt__11 Er—1 + 0, Fg Oy

=0 =0
= (% — Qi+ P — Q1) QY &1+ Q1 QY &+ FY Oy
= — k¢ = A\¢ :;1,:_1 ;rf

55

Compute the Information Vector

= We obtain the information vector by

= Q (-1 + F, 0y)

= O (2 &+ Fy o)

= Qt__ll &1+ F;;F Ot

= (Qt :(I)t + (I)E:Qt—l + Qt—£) Qt__11 Er—1 + 0, Fg Oy

=0 =0
= (% — Qi+ P — Q1) QY &1+ Q1 QY &+ FY Oy
= — k¢ = A\¢ :;1,:_1 ;rf

= &1+ (M — Ke) p—1 + 4 F 5

56

SEIF - Prediction Step (3/3)

10:

11:
12:

SEIF _motion_update(&; 1,1, g1, Uz):

F o=...

S =...

A=—...

\Ilt—FT[(I—I—A)_l Il F,

At = ‘I’ Dy + Q 1‘I’t—|-‘I’ Q1 Uy

O, =1+ N
=&, FI'(R; '+ F, ®, FI)~1 F, &,
Qt (I)t — K¢

=& 1+ (N — Ky) o1 + Q4 FL 6,

ft = p—1 + FL§
return &, §y, jiy

57

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

ft, Q) = SEIF_measurement_update(&;, Qy, jit, 2:)
3: = SEIF _update_state_estimate(&;, {1y, ji4)

4: ft, Q, = SEIF _sparsification(&;, ¢,)
5: return &,Qt [t

1: 0. Qy, 11y = SEIF _motion_update(& 1, Q1 jts—1,DONE

58

SEIF — Measurement (1/2)

SEIF _measurement_update(&;, Qy, s, 2¢)

0,2 0
Qt_< 0 %2)

for all observed features z! = (%, $*)1 do

] = () e (ata association)

if landmark j never seen belore |
Hjw \ _ Pz) (ry cos(¢y + fit,e))
L, [ty ri sin(@f + fit,p)

- (5)-(57)
5y Hiy — Ht,y

YN
=
O
<

identical to the EKF SLAM

59

SEIF — Measurement (2/2)

Y O —qg 0...0 —0y +d, 0...0
2j—2 2N —2j

/@ —+/q0y, 0 0...0 +,/q0r +/q6y 0...0
10: H,'f:l) —

11: endfor

12: & =&+ >, Hi" Q7' [2 — 21+ H] 1]
13: Qy=Q,+ > HiT Q; ' H]

14: return &, (),

Difference to EKF (but as in EIF):

& = &+) Hi" Q' [2f — Z+H] pu]

O = Q-+ HT Q' H

60

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

1: 0. Qy, 11y = SEIF _motion_update(& 1, Q1 jts—1,DONE
2: &, = SEIF-measurement update(ft,ﬂt fr2r) DONE

‘ = SEIF _update_state_estimate(&;, Q, fis)
4: ft, Q, = SEIF _sparsification(&;, ¢,)

5: return &, Qt [t

61

Recovering the Mean

The mean is needed for the
= linearized motion model (pose)

» [inearized measurement model
(pose and visible landmarks)

= sparsification step (pose and subset
of the landmarks)

62

Recovering the Mean

= In the motion update step, we can
compute the predicted mean easily

SEIF _motion_update(&_1, Q¢ 1, te—1, Uz):

11: fig =1+ F, 0
12: return &, $), [y

63

Recovering the Mean

= Computing the corrected mean,
however, cannot be done as easy

= Computing the mean from the
information vector is costly:

p=0""¢

= Thus, SEIF SLAM approximates the
computation for the corrected mean

64

Approximation of the Mean

= Compute a few dimensions of the
mean in an approximated way

= [dea: Treat that as an optimization
problem and seek to find

A

fi = argmaxp(u)

1
= argmaxexp (—§,uTQ,u + §T,u>
7

= Seeks to find the value that maximize

the probability density function

65

Approximation of the Mean

= Differentiate function

= Set first derivative to zero
= Solve equation(s)

= [terate

= Can be done effectively given that
only a few dimensions of (4 are needed
(robot’s pose and active landmarks)

further details will follow...

66

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

= SEIF _update_state_estimate(&;, 2, [iy)
ft, Q, = SEIF _sparsification(&;, Q, 1)

return &, Q. [t

1: &, Q4 iy = SEIF _motion_update(& 1, Q1 fty—1, DO

D

2: ft,Qt = SEIF _measurement update(ft,ﬂt %) DONE

67

Sparsification

= In order to perform all previous
computations efficiently, we assumed
a sparse information matrix

= Sparsification step ensures that

= Question: what does sparsifying
the information matrix mean?

68

Sparsification

= Question: what does sparsifying
the information matrix mean?

= [t means “ignoring” some direct links
= Assuming conditional independence

Lt4+1 1101 119 1113

Lt+1

=)

Lt4+1 1101 112 113
Lt+4+1
m
m2

ms

69

Sparsification in General
= Replace the distribution
p(a, b, c)

= by an approximation p so that @ and b
are independent given ¢

p(b|a,c)=p(b|c)

70

Approximation by Assuming
Conditional Independence

» This leads to

p(a, b, c)

=
N
Q
=
o
N—"
>]S
N
>
o
N—"
=
~~
o
N—"’

approximation
71

Sparsification in SEIFs

= Goal: approximate () so that it is
and stays sparse

= Realized by maintaining only links
between the robot and a few
landmarks

= This also limits the number of links
between landmarks

72

Limit Robot-Landmark Links

= Consider a set of active landmarks
during the updates

_ robot features
link active passive

normalized information matrix

Courtesy: Thrun, Burgard, Fox 73

Active and Passive Landmarks

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

74

Sparsification Considers Three
Sets of Landmarks

= Active ones that stay active
= Active ones that become passive
= Passive ones

m = m+—|—m0—|—m_

active active passive
to passive

75

Sparsification

= Remove links between robot’s pose
and active landmarks that become
passive

= Equal to conditional independence
given the other landmarks

= No change in the links of passive ones
= Sparsification is an approximation!

|

p(xt,m ‘ Zl:taulit) — p(xtam 7m07m_ ‘ Zl:taulzt)

Y

76

Sparsification

= Dependencies from z,u not shown:

p(ajtam) — p(xt7m+7moam_>
— p(xt ‘ m+7m07m_) p(m+7m07m_>
= pla | m*,m’,m™ =0) p(m™,m°,m~)

~ T

Given the active landmarks, the
passive landmarks do not matter
for computing the robot’s pose
(so set to zero)

77

Sparsification

o Dependencies from z,u not shown:

p(xt, m) =

Sparsification: assume conditional
independence of the robot’s pose from
the landmarks that become passive

(given m™,

m- =0)

78

Sparsification
= Dependencies from z,u not shown:

p(xtam) — p(ajtam 5 1T 7m_>
— p(mt m+7m07m_)p(m+7moam_)

= plzy | mT,m",m” =0)p(m™,m",m")

79

Information Matrix Update

= Sparsifying the direct links between
the robot’s pose and m' results in

ﬁ(ajta m ‘ Z1:ts ul:t)

p(xt,m ‘ m ,Z]_.tau]_.t) p<m07m—|—7m_ ‘ Zl:tyulzt)

2

mT | m~ =0, 214, U1:)

= The spaxsificatjon replages 2, ¢ by
approximated walues

= Express ()\as a sym of three matrices

Q, = Q-2 43

80

Sparsified Information Matrix

ﬁ(xta m ‘ Z1:ts ul:t)

+ — _
plxy,m™T | m— =0, 214, U —
(s | ’ t) t) p(mo,m+,m ‘ Zl:tvu’l!t)

p(m* | m= =0, 21, ur.t)
= Conditioning Q; on m~ =0 yields QY
= Marginalizing m° from O yields €;
* Marginalizing z,m° from QY yields Q?
= Marginalizing = from Q; yields Q}
= Compute sparsified information matrix
O = Q-+

81

Information Vector Update

» The information vector can be
recovered directly by:

~

&t

Qt Mt

(Qt — Qt) Mt
Oy pe + (Q — Q) e
S+ (U — Q)

82

Sparsification

1:

SEIF _sparsification(&;, ¢, p4):

define Fy,,, Fx.m,, Iy as projection matrices
to mo, {x,mo}, and x, respectively

V0 = Fy s o FL U Fy ot mo FT

x,mt,mP0 x,mt,m0

O = Q= B, (FL Q0 F,,)~L FL O

+ Qg anmO (FT 0 Qg FwamO)_l FT Qg

T, m

— O, F, (FT Q,F,)"! FT Q,

& = & + (Qt — Q)

return &,)

I,1mo

Q = U -—02+0

3
t

83

Four Steps of SEIF SLAM

SEIF_SLAM (‘St—la Qt—l Mt—1, U, Zt).'

. Qy, 11y = SEIF _motion_update(&,_1, Q1 jts—1, DONE
ft, (), = SEIF_measurement_update(&;, Oy, [i¢, 2:) DANE

= SEIF -update_state_estimate(&;, Oy, jiy) DONE
ft, Q, = SEIF _sparsification(&;, 2,) DONE
return &,Qt [t

84

Effect of the Sparsification

landmarks: 50 linkss 1275

. A A
PO e
< ‘.-.A ," A_ -
IR -
- ; -
X -
o S :
! N .‘>,-
% D e e
sy /7 - -
' ¥ r -
J -
a
14 ‘.’" =
L |
landmarks: 50 links: 448

SEIF SLAM vs. EKF SLAM

= Roughly constant time complexity
vS. quadratic complexity of the EKF

= Linear memory complexity
vS. quadratic complexity of the EKF

= SEIF SLAM is less accurate than EKF
SLAM (sparsification, mean recovery)

86

SEIF & EKF: CPU Time

CPU time/iteration(second)

1.2

0.8

0.6

0.4

0.2

| | | | | I S E IIF |
EKF —8—
< 2
I l I ! I ! l !
50 100 150 200 250 300 350 400 450 500

Number of landmarks
Courtesy: Thrun, Burgard, Fox g7

SEIF & EKF: Memory Usage

]
e SEIF —e—
6e+06 EKE

5e+06 - -

4e+06 [-

Bytes

3e+06 - =

2e+06 - =

1e4+06 [—

0]] 1]] | 1
50 100 150 200 250 300 350 400 450 500

Number of landmarks
Courtesy: Thrun, Burgard, Fox gg

SEIF & EKF: Error Comparison

Average error

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

0

| | | | I | SEI||: |
L EKF —&8— _
- _ o -

]] | |]] |]
50 100 150 200 250 300 350 400 450 500

Number of landmarks
Courtesy: Thrun, Burgard, Fox gg

Influence of the Active Features

160 [-

- -
o N
o o

Update time (in sec)
3

EKF

10

140 -

- =2
o o

N
o

EKF

10

8 7 6 >)
Active Featu[',%surtesy: Thrun, Burgard, Fox gq

Influence of the Active Features

EKF 10 9 8 7 6 5 3

0.6 |

05

0.4 i

RMS Error
o
[4%
|
|

' reasonable values for the
o2rnumber of active features

0.1}

EKF 10 9 8 7 6 5 4
Active Features
Courtesy: Thrun, Burgard, Fox 91

Summary on SEIF SLAM

= SEIFs are an efficient approximation
of the EIF for the SLAM problem

= Neglects direct links by sparsification
= Mean computation is an approxmation

= Constant time updates of the filter
(for known correspondences)

= Linear memory complexity

= Inferior quality compared to EKF
SLAM

92

Literature

Sparse Extended Information Filter

= Thrun et al.: “"Probabilistic Robotics”,
Chapter 12.1-12.7

93

Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-, ,
bonn de

