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Robot Mapping  

Short Introduction to Particle 
Filters and Monte Carlo 
Localization 

Gian Diego Tipaldi, Wolfram Burgard 
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Gaussian Filters 

 The Kalman filter and its variants can 
only model Gaussian distributions 

Courtesy: K. Arras 



3 

Motivation 

 Goal: approach for dealing with 
arbitrary distributions 
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Key Idea: Samples 

 Use multiple samples to represent 
arbitrary distributions 

samples 
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Particle Set 

 Set of weighted samples 
 
 
 

 

 

 The samples represent the posterior 

 

 

state  
hypothesis 

importance  
weight 
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Particles for Approximation 

 Particles for function approximation 

 

 

 

 

 

 The more particles fall into a region, 
the higher the probability of the region 

How to obtain such samples? 
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Closed Form Sampling is Only 
Possible for a Few Distributions  

 Example: Gaussian 

How to sample from other distributions? 
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Importance Sampling Principle 

 We can use a different distribution g  

to generate samples from f 

 Account for the “differences between  

g and f ” using a weight w = f / g 

 target f  

 proposal g 

 Pre-condition: 

 f(x)>0  g(x)>0 
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Importance Sampling Principle 
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Particle Filter 

 Recursive Bayes filter 

 Non-parametric approach 

 Models the distribution by samples 

 Prediction: draw from the proposal 

 Correction: weighting by the ratio  
of target and proposal 

 

The more samples we use,  
the better is the estimate! 
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Particle Filter Algorithm 

1. Sample the particles using the 

proposal distribution 

 

2. Compute the importance weights 

 

 

 Resampling: Draw sample    with 
probability      and repeat    times 
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Particle Filter Algorithm 
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Monte Carlo Localization 

 Each particle is a pose hypothesis 

 Proposal is the motion model 

 

 

 Correction via the observation model  
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Particle Filter for Localization 



15 

Resampling 

 Draw sample    with probability     . 
Repeat    times. 

 Informally: “Replace unlikely samples 
by more likely ones” 

 Survival of the fittest 

 “Trick” to avoid that many samples 
cover unlikely states 

 Needed as we have a limited number 
of samples 
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Resampling 

w2 

w3 

w1 wn 

Wn-1 

  Roulette wheel   

  Binary search 

  O(J log J) 

  Stochastic universal  
    sampling 

  Low variance 

  O(J) 
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Low Variance Resampling 
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initialization 
Courtesy: Thrun, Burgard, Fox 
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observation 
Courtesy: Thrun, Burgard, Fox 
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resampling 
Courtesy: Thrun, Burgard, Fox 
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motion update 
Courtesy: Thrun, Burgard, Fox 
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measurement 
Courtesy: Thrun, Burgard, Fox 
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weight update 
Courtesy: Thrun, Burgard, Fox 
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resampling 
Courtesy: Thrun, Burgard, Fox 
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motion update 
Courtesy: Thrun, Burgard, Fox 
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measurement 
Courtesy: Thrun, Burgard, Fox 
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weight update 
Courtesy: Thrun, Burgard, Fox 
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resampling 
Courtesy: Thrun, Burgard, Fox 
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motion update 
Courtesy: Thrun, Burgard, Fox 
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measurement 
Courtesy: Thrun, Burgard, Fox 
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weight update 
Courtesy: Thrun, Burgard, Fox 
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resampling 
Courtesy: Thrun, Burgard, Fox 
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motion update 
Courtesy: Thrun, Burgard, Fox 
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measurement 
Courtesy: Thrun, Burgard, Fox 
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Summary – Particle Filters 

 Particle filters are non-parametric, 
recursive Bayes filters 

 Posterior is represented by a set of 
weighted samples 

 Proposal to draw the samples for t+1 

 Weight to account for the differences 
between the proposal and the target 

 Work well in low-dimensional spaces 
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Summary – PF Localization 

 Particles are propagated according to 
the motion model 

 They are weighted according to the 
likelihood of the observation 

 Called: Monte-Carlo localization (MCL) 

 MCL is the gold standard for mobile 
robot localization today 
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Literature 

On Monte Carlo Localization 

 Thrun et al. “Probabilistic Robotics”,  
Chapter 8.3 

 

On the particle filter 

 Thrun et al. “Probabilistic Robotics”,  
Chapter 3 

 

On motion and observation models 

 Thrun et al. “Probabilistic Robotics”, 
Chapters 5 & 6 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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