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Characteristics of RL
SL VS RL

e Supervised Learning
e |.I.d data
e direct and strong supervision (label: what is the right thing to do)
* |nstantaneous feedback
e Reinforcement Learning
e sequential data, non-i.i.d
e NO supervisor, only a reward signal (rule: what you did is good or bad)

» delayed feedback
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e Characteristics of Reinforcement Learning (RL)

e Components of RL (MDP, value, policy, Bellman)
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Components of RL
MDP

* A general framework for sequential decision making
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Components of RL
MDP

* A general framework for sequential decision making

e AMDRP is atuple: <S, ./4, 7)7 R, 7>

S :states
A :actions
P :transition probability, P2, = P[S;y1 = s'|S; = s, A; = a]

R :reward function, RS = E [R;,1|S; =s, A; = a]

~v :discount factor,y € [0, 1]
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Components of RL
MDP

* A general framework for sequential decision making

e AMDRP is atuple: <S, A, 7)7 Ra 7>

S :states
A :actions
P :transition probability, P2, = P[S;y1 = s'|S; = s, A; = a]

R :reward function, RS = E [R;,1|S; =s, A; = a]

~v :discount factor,y € [0, 1]

e Markov property:

“The future is independent of the past given the present”
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* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G: =Rip1 + 7R+ ... = ZVthJrkJrl
k=0
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Components of RL
Policy & Return & Value

* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G =R +7Rio + ... = ZVthJrkJrl
k=0

e State-value function:

vr(8) = E; [Gi|Sy = 8]
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Components of RL
Policy & Return & Value

* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G = Rip1 + 7R +... = ZWthJrkJrl
k=0

e State-value function:

vr(8) = E; [Gi|Sy = 8]

e Action-value function:

gr(s,a) = E; |G|S; =s,A; = a
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Components of RL
Bellman Equations

e Bellman Expectation Equation

vr(8) = Ex [Ret1 + Y0r(St41)[St = 8|

Vr(8) = &

vn(s) = ) m(als) (RZ‘ 7> 7’35%(8')>

acA s’'e€S
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Components of RL
Bellman Equations

e Bellman Optimality Equation
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s’eS
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Components of RL
Prediction VS Control

e Prediction

given a policy, evaluate how much reward you can get
by following that policy
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Components of RL
Prediction VS Control

e Prediction

given a policy, evaluate how much reward you can get
by following that policy

e (Control

find an optimal policy that maximizes the cumulative
future reward
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* Planning

e the underlying MDP is known

e | earning

* the underlying MDP is initially unknown
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* Planning
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Components of RL
Planning VS Learning

* Planning
e the underlying MDP is known
e agent only needs to perform computations on the given model
e dynamic programming (policy iteration, value iteration)
e | earning
* the underlying MDP is initially unknown
e agent needs to interact with the environment

 model-free (learn value / policy) / model-based (learn model, plan on it)
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e Characteristics of Reinforcement Learning (RL)
e The RL Problem (MDP, value, policy, Bellman)

e Planning (policy iteration, value iteration)
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Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems
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Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems

e For prediction: (iterative policy evaluation)
e Input: <SS, AR,S,~v>

e Qutput: VUr
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Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems

e For prediction: (iterative policy evaluation)

e Input: <SS, AR,S,~v>

e Qutput: VUr
* For control: (policy iteration, value iteration)

* Input: <SS, AR,S,v>

e Qutput: Vi y Tl
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Planning
Iterative Policy Evaluation

e |terative application of Bellman Expectation backup

V1 7 V2 — ... =2 Ug

Vk1(8) < s

Vg+1(S Z m(als) (Ra + Z P vk (s ))

acA



Planning
Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

evaluation

/—:\/x\\

T vV

starting

V r ¥ t—>greedy(V)
improvement
L
T\
®
Policy evaluation Estimate v; .
Iterative policy evaluation .
Policy impro\./em'ent Generate /' > 7 % R
Greedy policy improvement i A %




Planning
Value Iteration

e |terative application of Bellman Optimality backup
V1 —7 Vo — ... —7 Uy

Vk+1 (S‘) < S

(l

"/ o\ / \
uk(s") < s’ d O d O

Vk11(8) = max (R? + Z Pj‘s,vk(s’))

acA
s’eS
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Planning
Synchronous DP Algorithms

Problem Bellman Equation Algorithm

lterative

Prediction | Bellman Expectation Equation . .
Policy Evaluation

Bellman Expectation Equation

- Policy Iterati
+ Greedy Policy Improvement OlCY Steration

Control

Control Bellman Optimality Equation Value Iteration
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Characteristics of Reinforcement Learning (RL)
The RL Problem (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)

Model-free Prediction (MC, TD)
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Recap: Components of RL
Planning VS Learning

* Planning
e the underlying MDP is known
e agent only needs to perform computations on the given model
e dynamic programming (policy iteration, value iteration)
e | earning
* the underlying MDP is initially unknown
e agent needs to interact with the environment

 model-free (learn value / policy) / model-based (learn model, plan on it)
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Model-free Prediction
MC VS TD

e Monte Carlo Learning

 Temporal Difference Learning
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Model-free Prediction
MC VS TD

e Monte Carlo Learning

e |earns from complete trajectories, no bootstrapping

e Temporal Difference Learning

e |earns from incomplete episodes, by bootstrapping,
substituting the remainder of the trajectory with our estimate
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Model-free Prediction
MC VS TD

e Monte Carlo Learning
e |earns from complete trajectories, no bootstrapping

e estimates values by looking at sample returns, empirical
mean return

 Temporal Difference Learning

e |earns from incomplete episodes, by bootstrapping,
substituting the remainder of the trajectory with our estimate

e updates a guess towards a guess
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Model-free Prediction
MC

e Goal:

learn v, from episodes of experience under policy 7
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Model-free Prediction
MC

e (Goal:

learn v, from episodes of experience under policy 7

e Recall: Return is the total discounted reward:

Gy =R +7Riqo + ... = ZWkRHkJrl
k=0
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Model-free Prediction
MC

e (Goal:

learn v, from episodes of experience under policy 7

e Recall: Return is the total discounted reward:

G:=Riz1 +7Rii0+ ... = Z’Yth—l—k—l—l

k=0
e Recall: Value function is the expected return:

vr(8) = E; [Gi|Sy = 8]
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Model-free Prediction
MC

Goal:

learn v, from episodes of experience under policy 7

Recall: Return is the total discounted reward:

G:=Riz1 +7Rii0+ ... = Z’Yth—l—k—l—l

k=0
Recall: Value function is the expected return:

vr(8) = E; [Gi|Sy = 8]

MC policy evaluation (every visit MC):
uses empirical mean return instead of expected return
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Model-free Prediction
MC ->TD

e Goal:

learn v, from episodes of experience under policy 7

e MC:
updates V' (S;) towards actual return:

V(S;) < V(S) + oz‘ —V(S))
e TD:

updates V (S;) towards estimated return: (R;+1 + vV (S¢41)
V(St) <= V(St) + a(Riy1 + 7V (Se41))— V(St))
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Model-free Prediction

Changes recommended by
Monte Carlo methods (a=1)

45
~__actual outcome
. 40 -
Predicted

total

travel 35
time

30 -

| | I 1 1 |
leaving reach exiting 2ndary home arrive
office car highway road slreet home

Situation
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Predicted
total
travel
time

MC VS TD: Driving Home

Changes recommended
by TD methods (a=1)

45 -
actual
outcome
4() 4
35 -
30 -

I I | I I 1
leaving reach exiting 2ndary home arrive
office  car highway road streel home

Situation



Model-free Prediction
MC Backup

V(S:) < V(S:) + a (G — V(S))




Model-free Prediction
I'D Backup

V(St) < V(S:) + a(Rer1 + vV (Se41) — V(St))

O O O (O ® O O
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|
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Model-free Prediction
DP Backup

V(St) < Ex [Rep1 +7V(Se41)]




Model-free Prediction
Unified View

. Exhaustive
Dynamic search
programming
full | ')(‘ ’7\‘ | L 6 8 S
backups

Monte Carlo

bi‘é';‘u",li Y Temporal-Y *
difference
learning
- , -
shallow bootstrapping. A gegp  *
backups backups

;
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The RL Problem (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)

Model-free Prediction (MC, TD)

Model-free Control (Q-Learning)
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Model-free Control
Why model-free?

e MDP is unknown:

but experience can be sampled

e MDP is known:

but too big to use except to sample from it
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Recap: Planning
Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

evaluation
m
JU
starting v |74
Vn ¥ t—>greedy(V)
improvement
e
T\
®
Policy evaluation Estimate v; .
Iterative policy evaluation .
Policy improvement Generate ' >m " R
Greedy policy improvement i A %




Model-free Control
Generalized Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

gvaluation

m
U
starting v* 4
V B W
improvement
s *
Policy evaluation Estimate v, .
Any policy evaluation algorithm .
Policy improvement Generate 7' > 7 % ge
Any policy improvement algorithm N - |4
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Model-free Control
V->Q

e Greedy policy improvement over V(s) requires model of
MDP

7'(s) = argmax (R2 + P2,V (s))
acA

e Greedy policy improvement over Q(s,a) is model-free

7'(s) = argmax()(s, a)
acA
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Model-free Control
SARSA

S,A
R

A."

Q(S,A) < Q(S,A) + a(R+1Q(S,A') — Q(S, A))



Model-free Control
Q-Learning

S,A
R

S’

A’

Q(S,A) « Q(S,A) + a (R +ymaxQ(S',a') - Q(S. A))
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Model-free Control
SARSA VS Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
IChoose A’ from S’ using policy derived from Q (e.g., e-greedy )|
Q(S, 4) < Q(5,4) + a[R+1Q(S, A)[- Q(S, A)]
S+ S5|A «+ A

until S is terminal

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A,) — Q(S,A) + a[R + ymax, Q(S’,a)|— Q(S, A)]
S « 5

until S is terminal




Model-free Control

DP VS TD

Sample Backup (TD)

Bellman Expectation

Full Backup (DP)

Equation for v, (s) Iterative Policy Evaluation TD Learning
x| ‘S..‘\

Os
Bellman Expectation ®x
Equation for g, (s, a) Q-Policy Iteration Sarsa

®
Bellman Optimality 0(sa) /Z<>g\ /20%\0
Equation for q.(s, a) Q-Value lteration Q-Learning
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Model-free Control
DP VS TD

Full Backup (DP)

Sample Backup (TD)

Iterative Policy Evaluation
V(s) <« E[R+~yV(S') | s]

TD Learning
V(S) & R+~V(S')

Q-Policy lteration

Q(s,a) — E[R+~vQ(5", A') | 5,4

Sarsa
Q(S,A) < R+~vQ(S', A)

Q-Value lteration

Q(s,a) « E |R+~v max Q(5',3") | s,a

a'e A

61

Q-Learning
Q(S,A) & R+ max Q(S',a')

a’'e A






Outline
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Deep Reinforcement Learning (DQN)
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Deep Reinforcement Learning
Why?

e So far we represented value function by a lookup table
e every state s has an entry V(s)

e every state-action pair (s, a) has an entry Q(s, a)
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Deep Reinforcement Learning
Why?

e So far we represented value function by a lookup table
e every state s has an entry V(s)
e every state-action pair (s, a) has an entry Q(s, a)

e Problem w/ large MDPs
e too0 many states and/or actions to store in memory

e too slow to learn the value of each state individually

65



Deep Reinforcement Learning
How to?

e Use deep networks to represent:

e value function (value-based methods) d®aw) - ds.anw)

0(s, W) ~ v, (s)

or 4(s,a,w) =~ g,(s, a) w

e policy (policy-based methods) T

e model (model-based methods)
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Deep Reinforcement Learning
How to?

e Use deep networks to represent:

e value function (value-based methods) 42w - 4Ga,w)

: 't
V(s,w) = v,(s) A

or 4(s,a,w) =~ g,(s, a) w

e policy (policy-based methods) T

S

e model (model-based methods)

e Optimize value function / policy / model end-to-end
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Deep Reinforcement Learning
Q-learning -> DQN

Convglution Convglution Fully cgnnected Fully cgnnected

¢

2 cevyg> g |
+ B4 + B+ 0+ R+ R ™ < NP -)~
o] (@) OO0 00 < |
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Deep Reinforcement Learning
Q-learning -> DQN

DQN uses experience replay and fixed Q-targets

m [ake action a; according to e-greedy policy

m Store transition (S¢, ar, fr1.S:11) in replay memory D

m Sample random mini-batch of transitions (s, a, r,s’) from D
m Compute Q-learning targets w.r.t. old, fixed parameters w

m Optimise MSE between Q-network and Q-learning targets

2
L,’(W,') — ]Es,a,r,s’w'D,- (r + '7 ma?X Q(s” a,; Wi—) - Q(57 a; Wl))

m Using variant of stochastic gradient descent
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Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making

* |earn policies to maximize future reward
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Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making
* |earn policies to maximize future reward
* Deep Learning (DL)
* a general purpose framework for representation learning

e given an objective, learn representation that is required to achieve objective
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Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making
* |earn policies to maximize future reward
* Deep Learning (DL)
* a general purpose framework for representation learning
e given an objective, learn representation that is required to achieve objective
e DRL.: a single agent which can solve any human-level task
e RL defines the objective

e DL gives the mechanism

* RL + DL = general intelligence

(2



Some Recommendations

e Reinforcement Learning from David Silver on YouTube
e Reinforcement Learning, An Introduction, Richard Sutton, 2nd Edition
e DQN Nature Paper: Human-level Control Through Deep Reinforcement Learning
e Flappy Bird:
e Tabular RL: https://github.com/SarvagyaVaish/FlappyBirdRL

* Deep RL: https://github.com/songrotek/DRL-FlappyBird

* Many many 3rd party implementations, just search for “deep reinforcement learning”,

“dgn”, “a3c” on github

My implementations in pytorch: https://github.com/jingweiz/pytorch-rl
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https://github.com/songrotek/DRL-FlappyBird
https://github.com/jingweiz/pytorch-rl




