A Brief Introduction to
Reinforcement Learning

Jingwei Zhang
zhang@informatik.uni-freiburg.de

Outline

Characteristics of Reinforcement Learning (RL)
Components of RL (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)
Model-free Prediction (MC, TD)

Model-free Control (Q-Learning)

Deep Reinforcement Learning (DQN)

Outline

e (Characteristics of Reinforcement Learning (RL)

Characteristics of RL
SL VS RL

e Supervised Learning

e Reinforcement Learning

Characteristics of RL
SL VS RL

e Supervised Learning

e |.I.d data

e Reinforcement Learning

e sequential data, non-i.i.d

Characteristics of RL
SL VS RL

e Supervised Learning
e |.i.d data

e direct and strong supervision (label: what is the right thing to do)

e Reinforcement Learning
e sequential data, non-i.i.d

e no supervisor, only a reward signal (rule: what you did is good or bad)

Characteristics of RL
SL VS RL

e Supervised Learning
e |.I.d data
e direct and strong supervision (label: what is the right thing to do)
* |nstantaneous feedback
e Reinforcement Learning
e sequential data, non-i.i.d
e NO supervisor, only a reward signal (rule: what you did is good or bad)

» delayed feedback

Outline

e Characteristics of Reinforcement Learning (RL)

e Components of RL (MDP, value, policy, Bellman)

10

Components of RL
MDP

* A general framework for sequential decision making

11

Components of RL
MDP

* A general framework for sequential decision making

e AMDRP is atuple: <S, ./4, 7)7 R, 7>

S :states
A :actions
P :transition probability, P2, = P[S;y1 = s'|S; = s, A; = a]

R :reward function, RS = E [R;,1|S; =s, A; = a]

~v :discount factor,y € [0, 1]

12

Components of RL
MDP

* A general framework for sequential decision making

e AMDRP is atuple: <S, A, 7)7 Ra 7>

S :states
A :actions
P :transition probability, P2, = P[S;y1 = s'|S; = s, A; = a]

R :reward function, RS = E [R;,1|S; =s, A; = a]

~v :discount factor,y € [0, 1]

e Markov property:

“The future is independent of the past given the present”

13

Components of RL
Policy & Return & Value

* Policy:

m(als) =P|A; = a|S; = s|

Components of RL
Policy & Return & Value

* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G: =Rip1 + 7R+ ... = ZVthJrkJrl
k=0

15

Components of RL
Policy & Return & Value

* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G =R +7Rio + ... = ZVthJrkJrl
k=0

e State-value function:

vr(8) = E; [Gi|Sy = 8]

16

Components of RL
Policy & Return & Value

* Policy:

e Return:

m(als) =P|A; = a|S; = s|

G = Rip1 + 7R +... = ZWthJrkJrl
k=0

e State-value function:

vr(8) = E; [Gi|Sy = 8]

e Action-value function:

gr(s,a) = E; |G|S; =s,A; = a

17

Components of RL
Bellman Equations

e Bellman Expectation Equation

vr(8) = Ex [Ret1 + Y0r(St41)[St = 8|

Vr(8) = &

vn(s) =) m(als) (RZ‘ 7> 7’35%(8')>

acA s’'e€S

18

Components of RL
Bellman Equations

e Bellman Optimality Equation

() (b%

o ya
0, (s') 4 8 C{ \O O \O

s’eS

19

Components of RL
Prediction VS Control

e Prediction

given a policy, evaluate how much reward you can get
by following that policy

20

Components of RL
Prediction VS Control

e Prediction

given a policy, evaluate how much reward you can get
by following that policy

e (Control

find an optimal policy that maximizes the cumulative
future reward

21

Components of RL
Planning VS Learning

* Plannin g

Components of RL
Planning VS Learning

* Planning

e the underlying MDP is known

e | earning

* the underlying MDP is initially unknown

23

Components of RL
Planning VS Learning

* Planning
e the underlying MDP is known

e agent only needs to perform computations on the given model
e | earning

* the underlying MDP is initially unknown

e agent needs to interact with the environment

24

Components of RL
Planning VS Learning

* Planning
e the underlying MDP is known
e agent only needs to perform computations on the given model
e dynamic programming (policy iteration, value iteration)
e | earning
* the underlying MDP is initially unknown
e agent needs to interact with the environment

 model-free (learn value / policy) / model-based (learn model, plan on it)

25

Outline

e Characteristics of Reinforcement Learning (RL)
e The RL Problem (MDP, value, policy, Bellman)

e Planning (policy iteration, value iteration)

27

Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems

28

Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems

e For prediction: (iterative policy evaluation)
e Input: <SS, AR,S,~v>

e Qutput: VUr

29

Planning
Dynamic Programming

 Applied when optimal solutions can be decomposed into
subproblems

e For prediction: (iterative policy evaluation)

e Input: <SS, AR,S,~v>

e Qutput: VUr
* For control: (policy iteration, value iteration)

* Input: <SS, AR,S,v>

e Qutput: Vi y Tl

30

Planning
Iterative Policy Evaluation

e |terative application of Bellman Expectation backup

V1 7 V2 — ... =2 Ug

Vk1(8) < s

Vg+1(S Z m(als) (Ra + Z P vk (s))

acA

Planning
Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

evaluation

/—:\/x\\

T vV

starting

V r ¥ t—>greedy(V)
improvement
L
T\
®
Policy evaluation Estimate v; .
Iterative policy evaluation .
Policy impro\./em'ent Generate /' > 7 % R
Greedy policy improvement i A %

Planning
Value Iteration

e |terative application of Bellman Optimality backup
V1 —7 Vo — ... —7 Uy

Vk+1 (S‘) < S

(l

"/ o\ / \
uk(s") < s’ d O d O

Vk11(8) = max (R? + Z Pj‘s,vk(s’))

acA
s’eS

33

Planning
Synchronous DP Algorithms

Problem Bellman Equation Algorithm

lterative

Prediction | Bellman Expectation Equation . .
Policy Evaluation

Bellman Expectation Equation

- Policy Iterati
+ Greedy Policy Improvement OlCY Steration

Control

Control Bellman Optimality Equation Value Iteration

34

Outline

Characteristics of Reinforcement Learning (RL)
The RL Problem (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)

Model-free Prediction (MC, TD)

36

Recap: Components of RL
Planning VS Learning

* Planning
e the underlying MDP is known
e agent only needs to perform computations on the given model
e dynamic programming (policy iteration, value iteration)
e | earning
* the underlying MDP is initially unknown
e agent needs to interact with the environment

 model-free (learn value / policy) / model-based (learn model, plan on it)

37

Model-free Prediction
MC VS TD

e Monte Carlo Learning

 Temporal Difference Learning

38

Model-free Prediction
MC VS TD

e Monte Carlo Learning

e |earns from complete trajectories, no bootstrapping

e Temporal Difference Learning

e |earns from incomplete episodes, by bootstrapping,
substituting the remainder of the trajectory with our estimate

39

Model-free Prediction
MC VS TD

e Monte Carlo Learning
e |earns from complete trajectories, no bootstrapping

e estimates values by looking at sample returns, empirical
mean return

 Temporal Difference Learning

e |earns from incomplete episodes, by bootstrapping,
substituting the remainder of the trajectory with our estimate

e updates a guess towards a guess

40

Model-free Prediction
MC

e Goal:

learn v, from episodes of experience under policy 7

41

Model-free Prediction
MC

e (Goal:

learn v, from episodes of experience under policy 7

e Recall: Return is the total discounted reward:

Gy =R +7Riqo + ... = ZWkRHkJrl
k=0

42

Model-free Prediction
MC

e (Goal:

learn v, from episodes of experience under policy 7

e Recall: Return is the total discounted reward:

G:=Riz1 +7Rii0+ ... = Z’Yth—l—k—l—l

k=0
e Recall: Value function is the expected return:

vr(8) = E; [Gi|Sy = 8]

43

Model-free Prediction
MC

Goal:

learn v, from episodes of experience under policy 7

Recall: Return is the total discounted reward:

G:=Riz1 +7Rii0+ ... = Z’Yth—l—k—l—l

k=0
Recall: Value function is the expected return:

vr(8) = E; [Gi|Sy = 8]

MC policy evaluation (every visit MC):
uses empirical mean return instead of expected return

44

Model-free Prediction
MC ->TD

e Goal:

learn v, from episodes of experience under policy 7

e MC:
updates V' (S;) towards actual return:

V(S;) < V(S) + oz‘ —V(S))
e TD:

updates V (S;) towards estimated return: (R;+1 + vV (S¢41)
V(St) <= V(St) + a(Riy1 + 7V (Se41))— V(St))

45

Model-free Prediction

Changes recommended by
Monte Carlo methods (a=1)

45
~__actual outcome
. 40 -
Predicted

total

travel 35
time

30 -

| | I 1 1 |
leaving reach exiting 2ndary home arrive
office car highway road slreet home

Situation

46

Predicted
total
travel
time

MC VS TD: Driving Home

Changes recommended
by TD methods (a=1)

45 -
actual
outcome
4() 4
35 -
30 -

I I | I I 1
leaving reach exiting 2ndary home arrive
office car highway road streel home

Situation

Model-free Prediction
MC Backup

V(S:) < V(S:) + a (G — V(S))

Model-free Prediction
I'D Backup

V(St) < V(S:) + a(Rer1 + vV (Se41) — V(St))

O O O (O ® O O
(O

/N 1

/N

®
QOMQ OF QM
’ \ | \
’ 1 \ /I \\: /, \
4

1
|
38

Model-free Prediction
DP Backup

V(St) < Ex [Rep1 +7V(Se41)]

Model-free Prediction
Unified View

. Exhaustive
Dynamic search
programming
full | ')(‘ ’7\‘ | L 6 8 S
backups

Monte Carlo

bi‘é';‘u",li Y Temporal-Y *
difference
learning
- , -
shallow bootstrapping. A gegp *
backups backups

;

50

Outline

Characteristics of Reinforcement Learning (RL)
The RL Problem (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)

Model-free Prediction (MC, TD)

Model-free Control (Q-Learning)

52

Model-free Control
Why model-free?

e MDP is unknown:

but experience can be sampled

e MDP is known:

but too big to use except to sample from it

53

Recap: Planning
Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

evaluation
m
JU
starting v |74
Vn ¥ t—>greedy(V)
improvement
e
T\
®
Policy evaluation Estimate v; .
Iterative policy evaluation .
Policy improvement Generate ' >m " R
Greedy policy improvement i A %

Model-free Control
Generalized Policy Iteration

* Evaluate the given policy and get: U

e Get an improved policy by acting greedily: @' = greedy(v,)

gvaluation

m
U
starting v* 4
V B W
improvement
s *
Policy evaluation Estimate v, .
Any policy evaluation algorithm .
Policy improvement Generate 7' > 7 % ge
Any policy improvement algorithm N - |4

55

Model-free Control
V->Q

e Greedy policy improvement over V(s) requires model of
MDP

7'(s) = argmax (R2 + P2,V (s))
acA

e Greedy policy improvement over Q(s,a) is model-free

7'(s) = argmax()(s, a)
acA

56

Model-free Control
SARSA

S,A
R

A."

Q(S,A) < Q(S,A) + a(R+1Q(S,A') — Q(S, A))

Model-free Control
Q-Learning

S,A
R

S’

A’

Q(S,A) « Q(S,A) + a (R +ymaxQ(S',a') - Q(S. A))

58

Model-free Control
SARSA VS Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
IChoose A’ from S’ using policy derived from Q (e.g., e-greedy)|
Q(S, 4) < Q(5,4) + a[R+1Q(S, A)[- Q(S, A)]
S+ S5|A «+ A

until S is terminal

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A,) — Q(S,A) + a[R + ymax, Q(S’,a)|— Q(S, A)]
S « 5

until S is terminal

Model-free Control

DP VS TD

Sample Backup (TD)

Bellman Expectation

Full Backup (DP)

Equation for v, (s) Iterative Policy Evaluation TD Learning
x| ‘S..‘\

Os
Bellman Expectation ®x
Equation for g, (s, a) Q-Policy Iteration Sarsa

®
Bellman Optimality 0(sa) /Z<>g\ /20%\0
Equation for q.(s, a) Q-Value lteration Q-Learning

60

Model-free Control
DP VS TD

Full Backup (DP)

Sample Backup (TD)

Iterative Policy Evaluation
V(s) <« E[R+~yV(S') | s]

TD Learning
V(S) & R+~V(S')

Q-Policy lteration

Q(s,a) — E[R+~vQ(5", A') | 5,4

Sarsa
Q(S,A) < R+~vQ(S', A)

Q-Value lteration

Q(s,a) « E |R+~v max Q(5',3") | s,a

a'e A

61

Q-Learning
Q(S,A) & R+ max Q(S',a')

a’'e A

Outline

Characteristics of Reinforcement Learning (RL)
The RL Problem (MDP, value, policy, Bellman)
Planning (policy iteration, value iteration)
Model-free Prediction (MC, TD)

Model-free Control (Q-Learning)

Deep Reinforcement Learning (DQN)

63

Deep Reinforcement Learning
Why?

e So far we represented value function by a lookup table
e every state s has an entry V(s)

e every state-action pair (s, a) has an entry Q(s, a)

64

Deep Reinforcement Learning
Why?

e So far we represented value function by a lookup table
e every state s has an entry V(s)
e every state-action pair (s, a) has an entry Q(s, a)

e Problem w/ large MDPs
e too0 many states and/or actions to store in memory

e too slow to learn the value of each state individually

65

Deep Reinforcement Learning
How to?

e Use deep networks to represent:

e value function (value-based methods) d®aw) - ds.anw)

0(s, W) ~ v, (s)

or 4(s,a,w) =~ g,(s, a) w

e policy (policy-based methods) T

e model (model-based methods)

66

Deep Reinforcement Learning
How to?

e Use deep networks to represent:

e value function (value-based methods) 42w - 4Ga,w)

: 't
V(s,w) = v,(s) A

or 4(s,a,w) =~ g,(s, a) w

e policy (policy-based methods) T

S

e model (model-based methods)

e Optimize value function / policy / model end-to-end

67

Deep Reinforcement Learning
Q-learning -> DQN

Convglution Convglution Fully cgnnected Fully cgnnected

¢

2 cevyg> g |
+ B4 + B+ 0+ R+ R ™ < NP -)~
o] (@) OO0 00 < |

68

Deep Reinforcement Learning
Q-learning -> DQN

DQN uses experience replay and fixed Q-targets

m [ake action a; according to e-greedy policy

m Store transition (S¢, ar, fr1.S:11) in replay memory D

m Sample random mini-batch of transitions (s, a, r,s’) from D
m Compute Q-learning targets w.r.t. old, fixed parameters w

m Optimise MSE between Q-network and Q-learning targets

2
L,’(W,') —]Es,a,r,s’w'D,- (r + '7 ma?X Q(s” a,; Wi—) - Q(57 a; Wl))

m Using variant of stochastic gradient descent

69

Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making

* |earn policies to maximize future reward

70

Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making
* |earn policies to maximize future reward
* Deep Learning (DL)
* a general purpose framework for representation learning

e given an objective, learn representation that is required to achieve objective

/1

Deep Reinforcement Learning
Al =RL + DL

* Reinforcement Learning (RL)
* a general purpose framework for decision making
* |earn policies to maximize future reward
* Deep Learning (DL)
* a general purpose framework for representation learning
e given an objective, learn representation that is required to achieve objective
e DRL.: a single agent which can solve any human-level task
e RL defines the objective

e DL gives the mechanism

* RL + DL = general intelligence

(2

Some Recommendations

e Reinforcement Learning from David Silver on YouTube
e Reinforcement Learning, An Introduction, Richard Sutton, 2nd Edition
e DQN Nature Paper: Human-level Control Through Deep Reinforcement Learning
e Flappy Bird:
e Tabular RL: https://github.com/SarvagyaVaish/FlappyBirdRL

* Deep RL: https://github.com/songrotek/DRL-FlappyBird

* Many many 3rd party implementations, just search for “deep reinforcement learning”,

“dgn”, “a3c” on github

My implementations in pytorch: https://github.com/jingweiz/pytorch-rl

/3

https://github.com/songrotek/DRL-FlappyBird
https://github.com/jingweiz/pytorch-rl

