
Albert-Ludwigs-Universität Freiburg, Institut für Informatik
Prof. Wolfram Burgard, Dr. Daniel Büscher, Alexander Schaefer
Lecture: Robot Mapping
Winter term 2017/2018

Sheet 4
Topic: Extended Kalman Filter SLAM

Due: November 23, 2017

Exercise: Implement an EKF SLAM System

Implement an extended Kalman filter SLAM (EKF SLAM) system. To support this
task, we provide a small Octave framework (see course website). The framework
contains the following folders:

data contains files representing the world definition and sensor readings.

octave contains the EKF SLAM framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the
directory octave by completing the stubs.

After implementing the missing parts, you can run the EKF SLAM system. To do
that, change into the directory octave and launch Octave. Type ekf slam to start
the main loop (this may take some time). The program plots the current belief
of the robot (pose and landmarks) in the directory plots. Figure 1 depicts some
example images of the state of the EKF. You can use the images for debugging and
to generate an animation. For example, you can use ffmpeg from inside the plots

directory as follows:

ffmpeg -r 10 -i ekf_ %03d.png -b 500000 ekf_slam.mp4

(a) Implement the prediction step of the EKF SLAM algorithm in the file
prediction step.m. Use the odometry motion model: xt

yt
θt

 =

 xt−1

yt−1

θt−1

 +

 δtrans cos(θt−1 + δrot1)
δtrans sin(θt−1 + δrot1)

δrot1 + δrot2

 .

Compute its Jacobian Gx
t to construct the full Jacobian matrix Gt:

Gx
t = I +

0 0 −δtrans sin(θt−1 + δrot1)
0 0 δtrans cos(θt−1 + δrot1)
0 0 0

 .

1



-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

t = 50 t = 150 t = 330

Figure 1: Example images of the state of the EKF at certain time indices.

For the noise in the motion model assume

Rx
t =

 0.1 0 0
0 0.1 0
0 0 0.01

 .

(b) Implement the correction step in the file correction step.m. The argument
z of this function is a struct array containing m landmark observations made
at time step t. Each observation z(i) has an id z(i).id, a range z(i).range, and
a bearing z(i).bearing.

Iterate over all measurements (i = 1, . . . ,m) and compute the Jacobian H i
t

(see Slide 05 Page 35ff.). You should compute a block Jacobian matrix Ht by
stacking the H i

t matrices corresponding to the individual measurements. Use
it to compute the Kalman gain and update the system mean and covariance
after the for-loop. For the noise in the sensor model assume that Qt is a
diagonal square matrix as follows

Qt =


0.01 0 0 . . .

0 0.01 0 . . .
0 0 0.01 . . .
...

...
...

. . .

 ∈ R2m×2m.

Some implementation tips:

• While debugging, run the filter only for a few steps by replacing the for-loop
in ekf slam.m by something along the lines of for t = 1:50.

• The command repmat allows you to replicate a given matrix in many different
ways and is magnitudes faster than using for-loops.

• When converting implementations containing for-loops into a vectorized form
it often helps to draw the dimensions of the data involved on a sheet of paper.

• Many of the functions in Octave can handle matrices and compute values along
the rows or columns of a matrix. Some useful functions that support this are
sum, sqrt, and many others.

2


