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Robot Mapping  

EKF SLAM 

Gian Diego Tipaldi, Wolfram Burgard 
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Simultaneous Localization and 
Mapping (SLAM) 

 Building a map and locating the robot 
in the map at the same time 

 Chicken-or-egg problem 

 

 
map 

localize 
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Definition of the SLAM Problem 

Given 

 The robot’s controls 

 

 Observations 
 

Wanted 

 Map of the environment 

 

 Path of the robot 



4 

Three Main Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 
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Bayes Filter 

 Recursive filter with prediction and 
correction step 

 

 Prediction 

 

 

 Correction 
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EKF for Online SLAM 

 We consider here the Kalman filter as 
a solution to the online SLAM problem 

Courtesy: Thrun, Burgard, Fox 
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Extended Kalman Filter 
Algorithm 
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EKF SLAM 

 Application of the EKF to SLAM 

 Estimate robot’s pose and locations of 
landmarks in the environment 

 Assumption: known correspondences 

 State space (for the 2D plane) is 
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EKF SLAM: State Representation 

 Map with n landmarks: (3+2n)-dimensional 
Gaussian 

 Belief is represented by  
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EKF SLAM: State Representation 

 More compactly 
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EKF SLAM: State Representation 

 Even more compactly (note:              )  



12 

EKF SLAM: Filter Cycle 

1. State prediction 

2. Measurement prediction 

3. Measurement 

4. Data association 

5. Update 
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EKF SLAM: State Prediction 
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EKF SLAM: Measurement 
Prediction 
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EKF SLAM: Obtained 
Measurement 
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EKF SLAM: Data Association and 
Difference Between h(x) and z 
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EKF SLAM: Update Step 
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EKF SLAM: Concrete Example 

Setup 

 Robot moves in the 2D plane 

 Velocity-based motion model 

 Robot observes point landmarks 

 Range-bearing sensor 

 Known data association 

 Known number of landmarks 
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Initialization 

 Robot starts in its own reference 
frame (all landmarks unknown)  

 2N+3 dimensions 
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Extended Kalman Filter 
Algorithm 
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Prediction Step (Motion) 

 Goal: Update state space based on the 
robot’s motion 

 Robot motion in the plane 

 

 

 

 

 How to map that to the 2N+3 dim 
space? 
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Update the State Space 

 From the motion in the plane 

 

 

 

 to the 2N+3 dimensional space 
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Extended Kalman Filter 
Algorithm 

DONE 
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Update Covariance 

 The function   only affects the robot’s 
motion and not the landmarks   

 

 Jacobian of the motion (3x3) 

Identity (2N x 2N) 
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Jacobian of the Motion 
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Jacobian of the Motion 
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Jacobian of the Motion 
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Jacobian of the Motion 
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This Leads to the Update 

Apply & DONE 
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Extended Kalman Filter 
Algorithm 

DONE 

DONE 
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EKF SLAM:Prediction Step 
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Extended Kalman Filter 
Algorithm 

DONE 

Apply & DONE 
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EKF SLAM: Correction Step 

 Known data association 

         :  i-th measurement at time t 
observes  the landmark with index j 

 Initialize landmark if unobserved  

 Compute the expected observation 

 Compute the Jacobian of  

 Proceed with computing the Kalman 
gain 
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Range-Bearing Observation 

 Range-Bearing observation 

 If landmark has not been observed  

observed 
location of 
landmark j 

estimated 
robot’s 
location 

relative 
measurement 
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Expected Observation 

 Compute expected observation 
according to the current estimate 
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Jacobian for the Observation 

 Based on  

 

 

 

 Compute the Jacobian 

 

 

 
low-dim space  
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Jacobian for the Observation 

 Based on  

 

 

 

 Compute the Jacobian 
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The First Component 

 Based on  

 

 

 

 We obtain (by applying the chain rule) 
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Jacobian for the Observation 

 Based on  

 

 

 

 Compute the Jacobian 
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Jacobian for the Observation 

 Use the computed Jacobian 

 

 

 

 map it to the high dimensional space 
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Next Steps as Specified… 

DONE 

DONE 
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Extended Kalman Filter 
Algorithm 

DONE 

DONE 

Apply & DONE 

Apply & DONE 

Apply & DONE 
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EKF SLAM – Correction (1/2) 
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EKF SLAM – Correction (2/2) 



45 

Implementation Notes 

 Measurement update in a single step 
requires only one full belief update  

 Always normalize the angular 
components  

 You may not need to create the 
matrices explicitly (e.g., in Octave)  



46 

Done! 
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Loop Closing 

 Loop closing means recognizing an 
already mapped area 

 Data association under 

 high ambiguity 

 possible environment symmetries 

 Uncertainties collapse after a loop 
closure (whether the closure was 
correct or not) 
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Before the Loop Closure 

Courtesy: K. Arras 
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After the Loop Closure 

Courtesy: K. Arras 
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 Loop Closures in SLAM 

 Loop closing reduces the uncertainty 
in robot and landmark estimates  

 This can be exploited when exploring 
an environment for the sake of better  
(e.g. more accurate) maps 

 Wrong loop closures lead to filter 
divergence 
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EKF SLAM Correlations 

 In the limit, the landmark estimates 
become fully correlated 

 Courtesy: Dissanayake  
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EKF SLAM Correlations 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF SLAM Correlations 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF SLAM Correlations 

Map              Correlation matrix 

Courtesy: M. Montemerlo 
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EKF SLAM Correlations 

 The correlation between the robot’s 
pose and the landmarks cannot be 
ignored 

 Assuming independence generates too 
optimistic estimates of the uncertainty 

Courtesy: J.M. Castellanos 
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EKF SLAM Uncertainties 

 The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically 

 New landmarks are initialized with maximum 
uncertainty  

  

 Courtesy: Dissanayake 



57 

EKF SLAM in the Limit 

 In the limit, the covariance associated 
with any single landmark location 
estimate is determined only by the 
initial covariance in the vehicle 
location estimate. 

Courtesy: Dissanayake 
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Example: Victoria Park Dataset 

Courtesy: E. Nebot 
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Victoria Park: Data Acquisition 

Courtesy: E. Nebot 
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Victoria Park: EKF Estimate 

Courtesy: E. Nebot 
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Victoria Park: Landmarks 

Courtesy: E. Nebot 
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Example: Tennis Court Dataset 

Courtesy: J. Leonard and M. Walter 
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EKF SLAM on a Tennis Court 

odometry estimated trajectory 

Courtesy: J. Leonard and M. Walter 
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EKF SLAM Complexity 

 Cubic complexity depends only on the 
measurement dimensionality  

 Cost per step: dominated by the 
number of landmarks: 

 Memory consumption:  

 The EKF becomes computationally 
intractable for large maps! 
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EKF SLAM Summary 

 The first SLAM solution 

 Convergence proof for the linear 
Gaussian case 

 Can diverge if non-linearities are large 
(and the reality is non-linear...) 

 Can deal only with a single mode 

 Successful in medium-scale scenes 

 Approximations exists to reduce the 
computational complexity 
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Literature 

EKF SLAM 

 Thrun et al.: “Probabilistic Robotics”, 
Chapter 10 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 

Cyrill Stachniss, 2014 
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