Robot Mapping

Unscented Kalman Filter

Gian Diego Tipaldi, Wolfram Burgard

KF, EKF and UKF

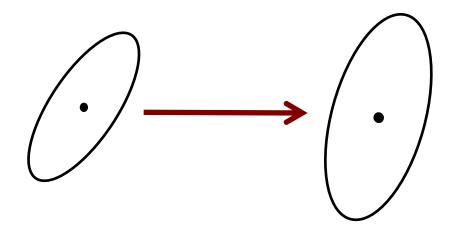
- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

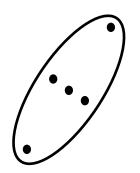
Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)



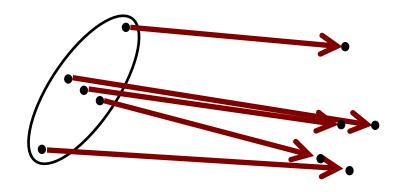
Linearization of the non-linear function through Taylor expansion

Unscented Transform



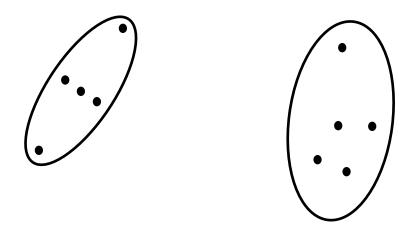
Compute a set of (so-called) sigma points

Unscented Transform



Transform each sigma point through the non-linear function

Unscented Transform



Compute Gaussian from the transformed and weighted sigma points

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma points has a weight
- Transform the point through the nonlinear function
- Compute a Gaussian from weighted points

 Avoids to linearize around the mean as Taylor expansion (and EKF) does

Sigma Points

- How to choose the sigma points?
- How to set the weights?

Sigma Points Properties

- How to choose the sigma points?
- How to set the weights?
- Select $\mathcal{X}^{[i]}, w^{[i]}$ so that:

$$\sum_{i} w^{[i]} = 1$$

$$\mu = \sum_{i} w^{[i]} \mathcal{X}^{[i]}$$

$$\Sigma = \sum_{i} w^{[i]} (\mathcal{X}^{[i]} - \mu) (\mathcal{X}^{[i]} - \mu)^{T}$$

lacktriangle There is no unique solution for $\mathcal{X}^{[i]}, w^{[i]}$

Sigma Points

Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

First sigma point is the mean

Sigma Points

Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$
 matrix square root
$$\text{column vector}$$

dimensionality scaling parameter

Matrix Square Root

- Defined as $S \text{ with } \Sigma = SS$
- Computed via diagonalization

$$\Sigma = VDV^{-1}
= V \begin{pmatrix} d_{11} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & d_{nn} \end{pmatrix} V^{-1}
= V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

Matrix Square Root

Thus, we can define

$$S = V \begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix} V^{-1}$$

$$D^{1/2}$$

so that

$$SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma$$

Cholesky Matrix Square Root

Alternative definition of the matrix square root

$$L \text{ with } \Sigma = LL^T$$

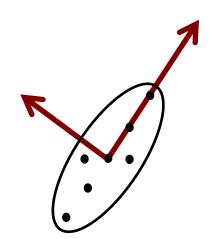
- Result of the Cholesky decomposition
- Numerically stable solution
- Often used in UKF implementations
- ullet L and Σ have the same Eigenvectors

Sigma Points and Eigenvectors

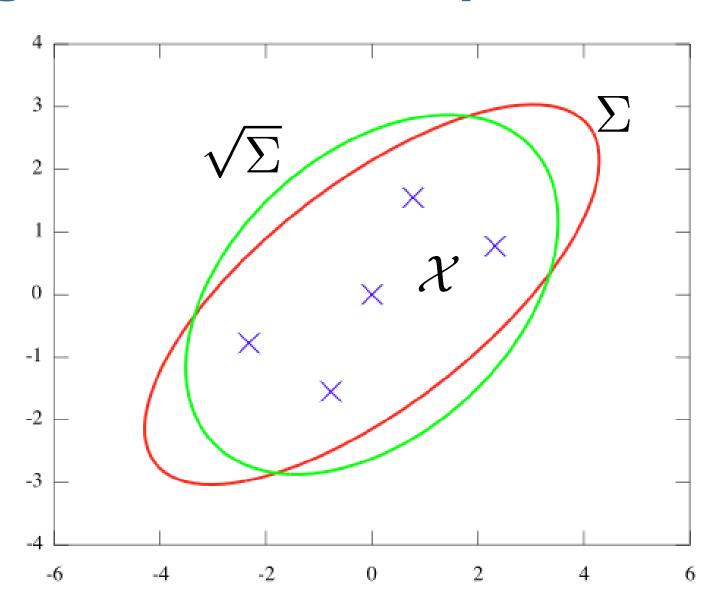
• Sigma point can but do not have to lie on the main axes of Σ

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)} \Sigma\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)} \Sigma\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$

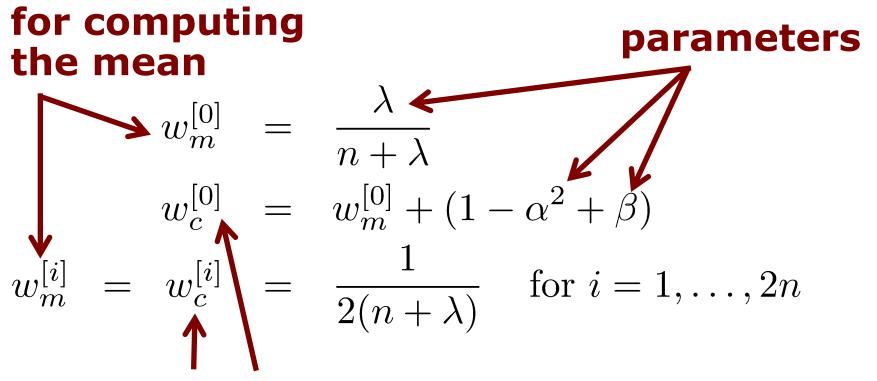


Sigma Points Example



Sigma Point Weights

Weight sigma points



for computing the covariance

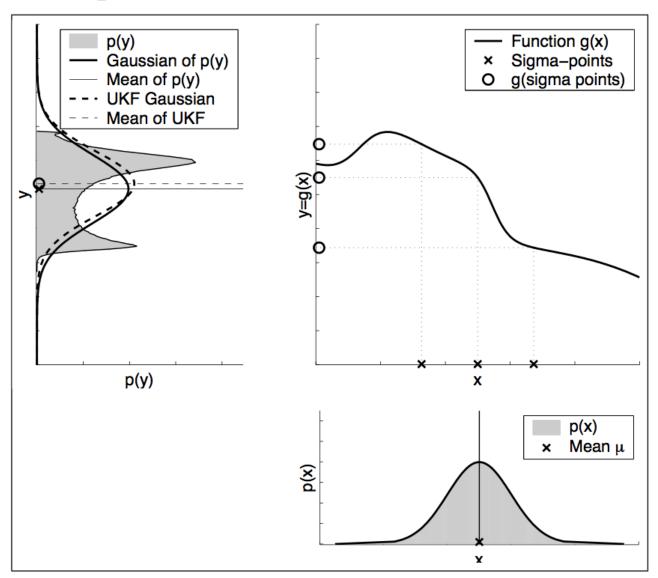
Recover the Gaussian

 Compute Gaussian from weighted and transformed points

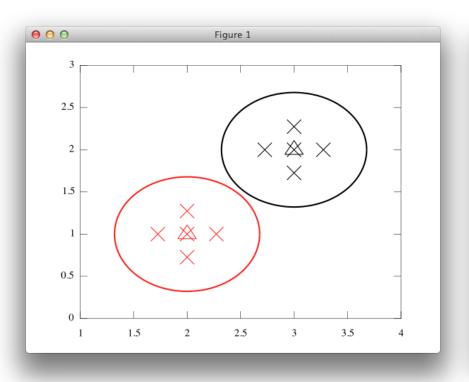
$$\mu' = \sum_{i=0}^{2n} w_m^{[i]} g(\mathcal{X}^{[i]})$$

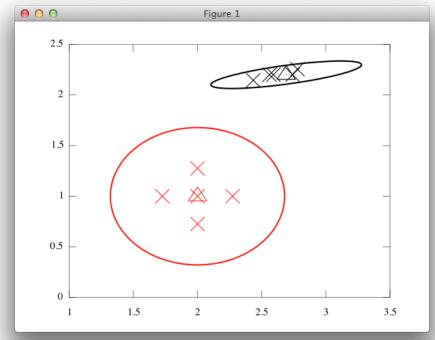
$$\Sigma' = \sum_{i=0}^{2n} w_c^{[i]} (g(\mathcal{X}^{[i]}) - \mu') (g(\mathcal{X}^{[i]}) - \mu')^T$$

Example



Examples





$$g((x,y)^T) = \begin{pmatrix} x+1\\ y+1 \end{pmatrix}^T$$

$$g((x,y)^T) = \begin{pmatrix} 1 + x + \sin(2x) + \cos(y) \\ 2 + 0.2y \end{pmatrix}^T$$

Unscented Transform Summary

Sigma points

$$\mathcal{X}^{[0]} = \mu$$

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)} \Sigma\right)_{i} \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)} \Sigma\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$

Weights

$$w_m^{[0]} = \frac{\lambda}{n+\lambda}$$

$$w_c^{[0]} = w_m^{[0]} + (1-\alpha^2 + \beta)$$

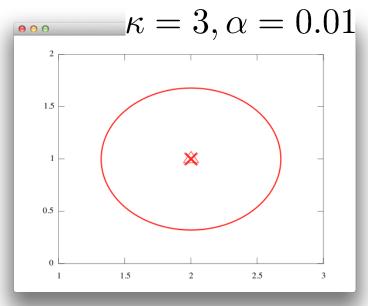
$$w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n+\lambda)} \quad \text{for } i = 1, \dots, 2n$$

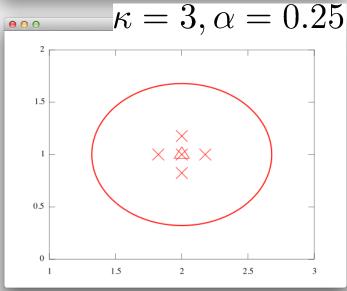
UT Parameters

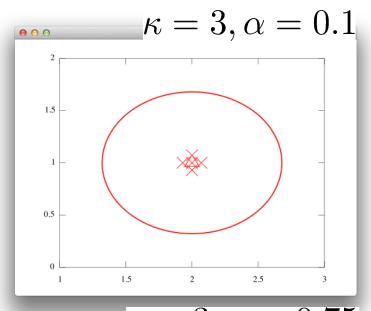
- Free parameters as there is no unique solution
- Scaled Unscented Transform suggests

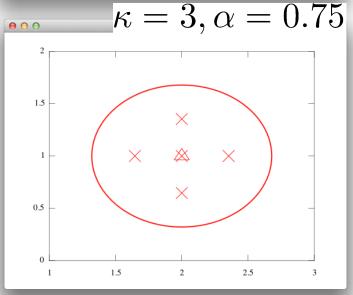
$$\begin{array}{lll} \kappa & \geq & 0 & \text{Influence how far the} \\ \alpha & \in & (0,1] & \text{sigma points are} \\ \alpha & = & \alpha^2(n+\kappa)-n \\ \beta & = & 2 & \text{Optimal choice for} \\ \text{Gaussians} \end{array}$$

Examples

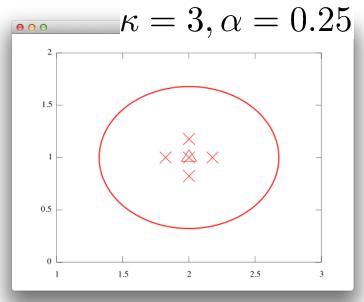


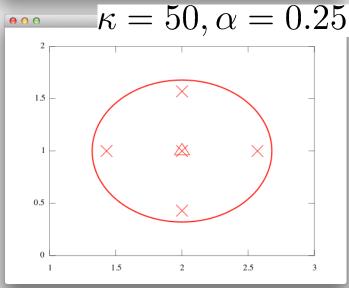


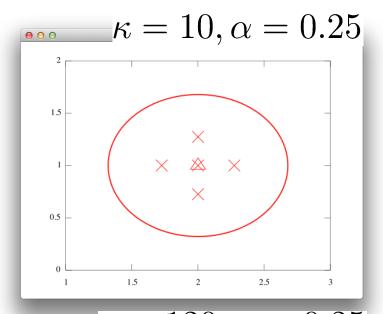


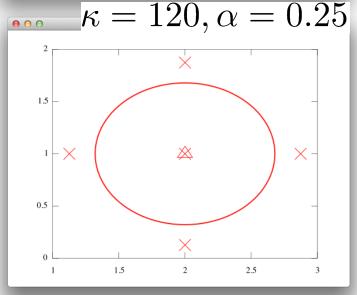


Examples









EKF Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
       \bar{\mu}_t = g(u_t, \mu_{t-1})
       \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t
          K_t = \bar{\Sigma}_t \ H_t^T (H_t \ \bar{\Sigma}_t \ H_t^T + Q_t)^{-1}
          \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
5:
       \Sigma_t = (I - K_t H_t) \Sigma_t
        return \mu_t, \Sigma_t
```

EKF to UKF – Prediction

Unscented

- Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- replace this by sigma point
- $ar{\mu}_t = ext{replace this by sigma poin} \ ar{\Sigma}_t = ext{propagation of the motion}$
- $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
- $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$ 5:
- $\Sigma_t = (I K_t H_t) \Sigma_t$
- return μ_t, Σ_t

UKF Algorithm – Prediction

1: Unscented_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: $\mathcal{X}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \sqrt{(n+\lambda)\Sigma_{t-1}} \quad \mu_{t-1} - \sqrt{(n+\lambda)\Sigma_{t-1}})$ 3: $\bar{\mathcal{X}}_t^* = g(u_t, \mathcal{X}_{t-1})$ 4: $\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]}$ 5: $\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^T + R_t$

EKF to UKF - Correction

Unscented

- Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2: $\bar{\mu}_t =$ replace this by sigma poin 3: $\bar{\Sigma}_t =$ propagation of the motion replace this by sigma point

use sigma point propagation for the expected observation and Kalman gain

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

6:
$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

return μ_t, Σ_t

UKF Algorithm - Correction (1)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$
7: $\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$
8: $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$
9: $S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$
10: $\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$
11: $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$

UKF Algorithm - Correction (1)

6:
$$\bar{\mathcal{X}}_{t} = (\bar{\mu}_{t} \quad \bar{\mu}_{t} + \sqrt{(n+\lambda)\bar{\Sigma}_{t}} \quad \bar{\mu}_{t} - \sqrt{(n+\lambda)\bar{\Sigma}_{t}})$$
7: $\bar{\mathcal{Z}}_{t} = h(\bar{\mathcal{X}}_{t})$
8: $\hat{z}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\mathcal{Z}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$
11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$

$$\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$$
(from EKF)

UKF Algorithm – Correction (2)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$
7: $\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$
8: $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$
9: $S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$
10: $\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$
11: $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$
12: $\mu_t = \bar{\mu}_t + K_t (z_t - \hat{z}_t)$
13: $\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$
14: $return \mu_t, \Sigma_t$

UKF Algorithm - Correction (2)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \quad \bar{\mu}_t + \sqrt{(n+\lambda)\bar{\Sigma}_t} \quad \bar{\mu}_t - \sqrt{(n+\lambda)\bar{\Sigma}_t})$$
7: $\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$
8: $\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$
9: $S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$
10: $\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$
11: $K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$
12: $\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$
13: $\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$
14: $return \ \mu_t, \Sigma_t$
15: $\bar{\Sigma}_t = (I - K_t H_t) \bar{\Sigma}_t = (I - K_t H_t) \bar{\Sigma}_t = \bar{\Sigma}_t - K_t (\Sigma^{x,z})^T = \bar{\Sigma}_t - K_t (\Sigma^{x,z})^T = \bar{\Sigma}_t - K_t (\Sigma^{x,z})^T = \bar{\Sigma}_t - K_t (S_t)^T = \bar{\Sigma}_t - K_t (S_t)^T = \bar{\Sigma}_t - K_t (S_t)^T = \bar{\Sigma}_t - K_t S_t K_t^T$
(see next slide)

From EKF to UKF - Computing the Covariance

$$\Sigma_{t} = (I - K_{t}H_{t})\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}H_{t}\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z})^{T}$$

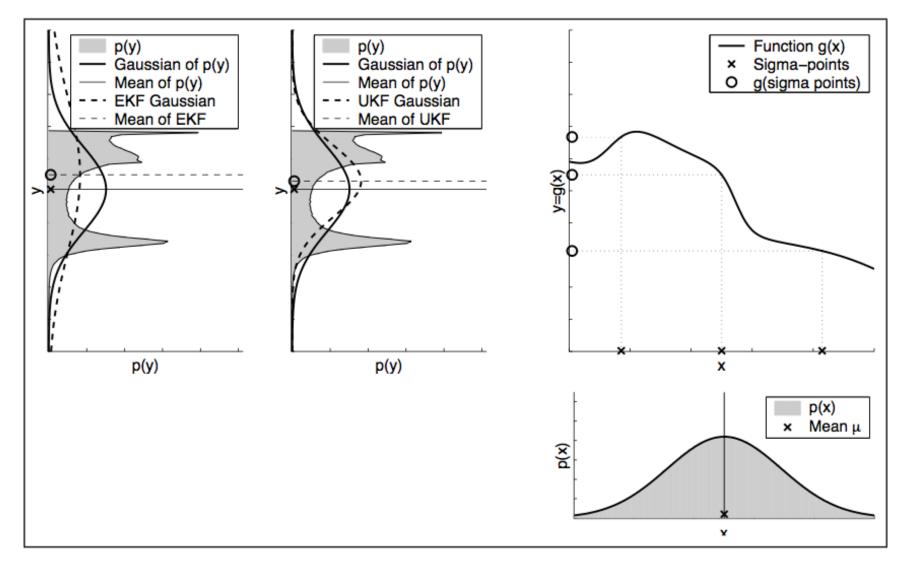
$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z}S_{t}^{-1}S_{t})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{K}_{t}S_{t})^{T}$$

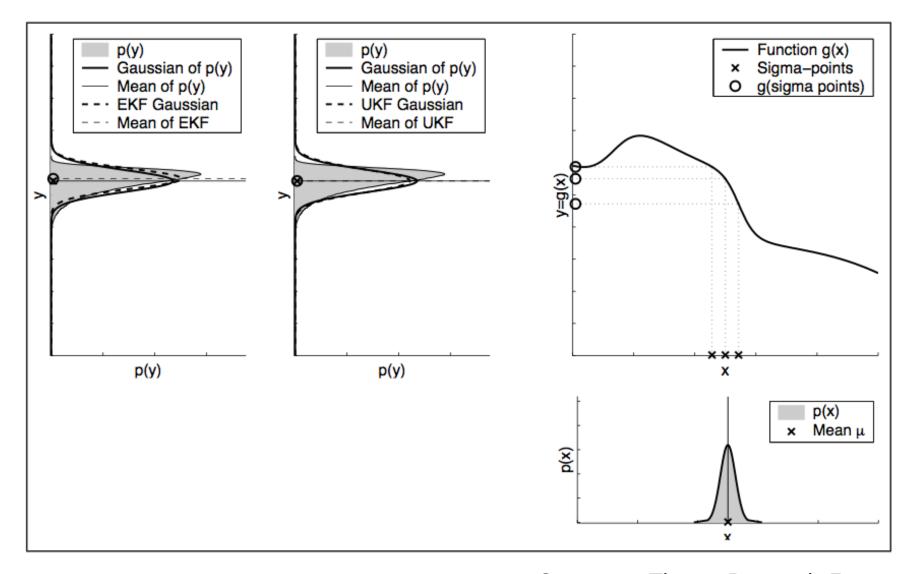
$$= \bar{\Sigma}_{t} - K_{t}S_{t}^{T}K_{t}^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}S_{t}K_{t}^{T}$$

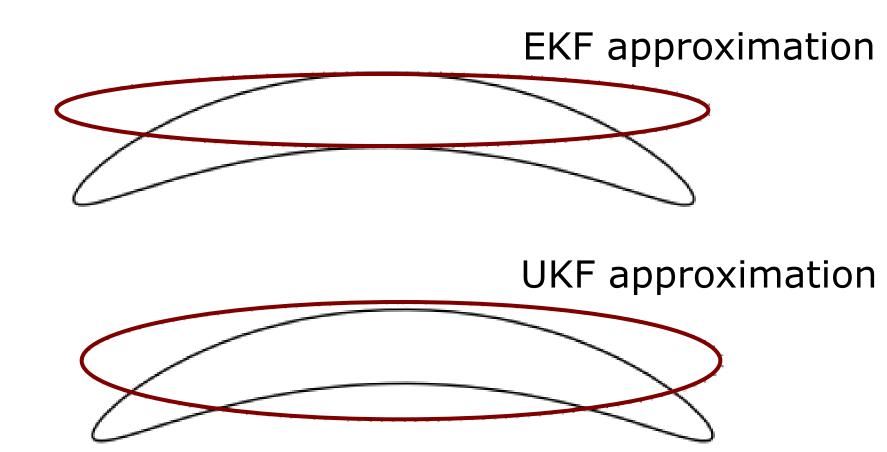
UKF vs. EKF



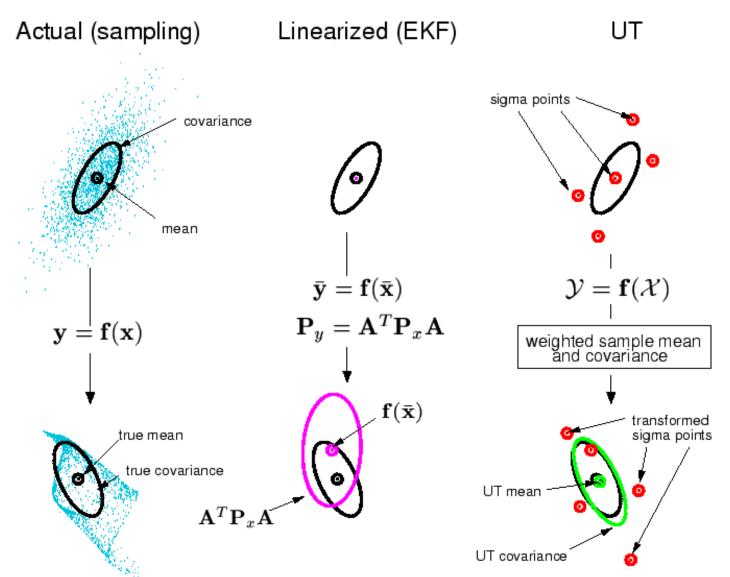
UKF vs. EKF (Small Covariance)



UKF vs. EKF - Banana Shape



UKF vs. EKF



Courtesy: E.A. Wan and R. van der Merwe

UT/UKF Summary

- Unscented transforms as an alternative to linearization
- UT is a better approximation than Taylor expansion
- UT uses sigma point propagation
- Free parameters in UT
- UKF uses the UT in the prediction and correction step

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often "somewhat small"
- No Jacobians needed for the UKF
- Same complexity class
- Slightly slower than the EKF
- Still restricted to Gaussian distributions

Literature

Unscented Transform and UKF

- Thrun et al.: "Probabilistic Robotics", Chapter 3.4
- "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- "Dynamische Zustandsschätzung" by Fränken, 2006, pages 31-34

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Edwin Olson, Pratik Agarwal, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de