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KF, EKF and UKF

= Kalman filter requires linear models
= EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

¥

Unscented Kalman Filter (UKF)



Taylor Approximation (EKF)

/) —

Linearization of the non-linear
function through Taylor expansion



Unscented Transform

Compute a set of (so-called)
sigma points



Unscented Transform

Transform each sigma point
through the non-linear function



Unscented Transform

Compute Gaussian from the
transformed and weighted
sigma points



Unscented Transform Overview

= Compute a set of sigma points
= Each sigma points has a weight

= Transform the point through the non-
linear function

= Compute a Gaussian from weighted
points

= Avoids to linearize around the mean
as Taylor expansion (and EKF) does



Sigma Points

= How to choose the sigma points?
= How to set the weights?



Sigma Points Properties

= How to choose the sigma points?
= How to set the weights?
= Select xl ! so that:

3wl
T Zw[i]g([]
Y, = Zw iyl — )T

» There is no umque solution for X1 wl?
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Sigma Points
= Choosing the sigma points

xl0l [

First sigma point is the mean
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Sigma Points

= Choosing the sigma points

xo= 4
xlil = ,u—l—(\/(n—l—/\)Z) fori=1,...,n
il —

,u—}\/(n—l—)\) Z)i_n fori=n+1,...,2n

\

matrix square column vector

root

dimensionality scaling parameter
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Matrix Square Root

» Defined as S with > = SS
= Computed via diagonalization

> = VDv!
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Matrix Square Root
= Thus, we can define

\/dll 0
S =V 0 0 V1

0 dn,

A\ J/

D1l/2

= 5O that
SS = (VDY2v—\YWVDY2v—YH =vDVl=%
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Cholesky Matrix Square Root

= Alternative definition of the matrix
square root

L with ¥ = LL!

= Result of the Cholesky decomposition
= Numerically stable solution

= Often used in UKF implementations

= [,and Y. have the same Eigenvectors
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Sigma Points and Eigenvectors

= Sigma point can but do not have to
lie on the main axes of .

xll = u+(\/(n—|—)\)§]) fori=1,..., n

1

il = ,u—<\/(n+)\)§]). fori=n+1,...,2n

7

15



Sigma Points Example
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Sigma Point Weights
= Weight sigma points

for computing

the mean parameters
A
0] _
Hm n -+ A
wy = w\ = : forte=1,...,2n
. ,f 2(n+ A) A
\

for computing the covariance
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Recover the Gaussian

= Compute Gaussian from weighted and
transformed points

2n
p' > will g(xth
1=0

2= D el (g(X) = p)(g(xt) = )"
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Example

p(y) — Function g(x)
—— Gaussian of p(y) i x  Sigma-points
—— Mean of p(y) O g(sigma points)
- - - UKF Gaussian [
- - - Mean of UKF

9%

y:

L4
Ly

p(x)
x Meanp

P(x)

¥

Courtesy: Thrun, Burgard, Fox 1g




Examples

: T
o((z.)T) = ( 142+ Zl:l_(gg)y—l— cos(y) )
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Unscented Transform Summary

= Sigma points

xloh =
xlil = u+(\/(n—|—)\)§])_ fori=1,...,n
xll = u—(\/(n—l—)\)Z)_ fore=n+1,...,2n
= Weights
A
(0] p—
W n+ A
we = wy +(1-a®+ )
1
wi =l = fori=1,...,2n
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UT Parameters

= Free parameters as there is no unique
solution

= Scaled Unscented Transform suggests

Kk > 0 Influence how far the
sigma points are

a € (0,1] away from the mean

A = o*(n+k)—n

5 — 9 Optimal choice for

Gaussians
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Examples
k=3,a=0.01
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Examples
k=3,aa=0.295

=10, a = 0.25
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EKF Algorithm

Extended_Kalman_filter(u; 1, %1, us, 2¢):

e = g(ug, pe—1)
Zt — Gt Zt—l G? —|— Rt

Ky =% H (Hy Xy H' + Q)™
pe = e + Kie(ze — h(fw))

Zt — (I— Kt Ht) Et
return iy, 23+

25



EKF to UKF - Prediction

Unscented
Extended Kalman _filter(u; 1, %1, us, 2¢):

Ht =  replace this by sigma point
>y =  propagation of the motion

return iy, 23+

26



UKF Algorithm - Prediction

1:

Unscented_Kalman_filter(u: 1, >¢—1, U, 2¢):

Xio1 = (-1 1+ /(M + N1 e — V/(m+ N2 )

Xt* — Q(Uta Xt—l)
2n
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EKF to UKF - Correction

N

&0

=k

Unscented

Ex-t-eﬁd-ed'_Kalman_ﬁlter(ut_l, Zt—]_? Uy, Zt):

Ht =  replace this by sigma point
>y =  propagation of the motion

use sigma point propagation for the
expected observation and Kalman gain

return iy, 2+
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UKF Algorithm - Correction (1)

10:

11:

Xy =

(B e+ + NS i —/(n+ N)Ey)

Zi_lka

2,5 — Z wk} _t[l]

Ky =

}:w (2" =227 = 2)T + @
z—O

sz](X — fit)( ]—Zt)T

EwZS_
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UKF Algorithm - Correction (1)

10:

11:

Xy = (fig
Z, = h(&,)

1=0
2n
57 =3l
1=0
K, =397 ;71

A+ (N2 i —

V(n+ )2

=3 HT(Ht My HT =+ Qt)

(from EKF)
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UKF Algorithm - Correction (2)

6: Xy= (i e +V(n+ NS g — /(n+ NS
7 Z, = h(Xy)

10: X797 = Z wl (X — )2 - 20T

11: K, =%7*s§;1

12: pe = fig + K (20 — 2¢)
13: Y =% —K,; S; K
14 return i, 24




UKF Algorithm - Correction (2)

10:

11:
12:
13:
14

X = (e i+ (n+ )%
Zy = h(X)

2n
Zt = qu[g _t[l]

o B
se=> wllE! 2@ - 27
- N 2n o i
57 = S ull(E (- 2

return fig, 2

it —

2y

V(n+ )2

o
5y

¢
5 —
5 —

(see next slide)

(-
— KiHy>

— K (Ex’Z>T
Ky (57757 8) T
— Ky (K:S)"

i —

Kth)it

K:SI'KT
KS; K}
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From EKF to UKF - Computing
the Covariance
Zt — (I — Kth)it
— it — Kthit
i =
= X — K (2%%)
— it — Kt (z_]a:,zst—lst)T
S : T
— Zt _ Kt (KtSt)
= ¥, - K:S} K}
— St — KtStKér
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UKF vs. EKF

ply)
— Gaussian of ply)

—— Mean of p(y)
- - - EKF Gaussian
- - - Mean of EKF

p(y)
— @Gaussian of ply)

—— Mean of p(y)
- - - UKF Gaussian
- - - Mean of UKF

oly)

— Function g(x)
x Sigma-points
O g(sigma points)

o =,

| y=9(x)

.

x » x
X
p(x)
x Meanp
2|
X1
x

Courtesy: Thrun, Burgard, Fox
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UKF vs. EKF (Small Covariance)

p(y)
—— Gaussian of p(y)

— Mean of ply)
- - - EKF Gaussian
- - - Mean of EKF

p(y)
—— Gaussian of p(y)

— Mean of ply)
- - - UKF Gaussian
- - - Mean of UKF

o)

o)

—— Function g(x)
x Sigma-points
O g(sigma points)

y=9(x)

4

» X

p(x)
x Meanpu

o

Courtesy: Thrun, Burgard, Fox
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UKF vs. EKF — Banana Shape

EKF approximation

= —=

UKF approximation

e
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UKF vs. EKF

Actual (sampling) Linearized (EKF) uT
: #\ - | sigma pmnts

‘ y :: f(X)

weighted sample mean
and covariance

v

transfarmed
mgma points

LT mean

LT Gwananue

Courtesy: E.A. Wan and R. van der Merwe



UT/UKF Summary

» Unscented transforms as an
alternative to linearization

= UT is a better approximation than
Taylor expansion

= UT uses sigma point propagation
* Free parameters in UT

= UKF uses the UT in the prediction and
correction step
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UKF vs. EKF

= Same results as EKF for linear models

= Better approximation than EKF for
non-linear models

= Differences often “somewhat smal
= No Jacobians needed for the UKF
= Same complexity class

= Slightly slower than the EKF

= Still restricted to Gaussian
distributions

III
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Unscented Transform and UKF
= Thrun et al.: “"Probabilistic Robotics”,
Chapter 3.4

= “A New Extension of the Kalman Filter
to Nonlinear Systems” by Julier and
Uhlmann, 1995

= “Dynamische Zustandsschatzung” by
Franken, 2006, pages 31-34
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-, |
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