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Gaussians

= Gaussian described by moments pu, 2.
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Canonical Parameterization

= Alternative representation for
Gaussians

= Described by information matrix ()
and information vector ¢



Canonical Parameterization

= Alternative representation for
Gaussians

= Described by information matrix ()
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= and information vector ¢
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Complete Parameterizations

moments canonical




Towards the Information Form
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Towards the Information Form
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Towards the Information Form

p(x)
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Towards the Information Form

= det(QWE)_% exp (
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Dual Representation

exp(—gp' ¢

1
exp ( — §$TQ$ + :L‘T§>
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canonical parameterization

1

p(z) = det(2n%)F exp ( — 2 (x— )" Sz — p))

moments parameterization

11



Marginalization and Conditioning
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From the Kalman Filter to the
Information Filter

= Two parameterization for Gaussian
= Same expressiveness

= Marginalization and conditioning have
different complexities

= We |learned about Gaussian filtering
with the Kalman filter in Chapter 4

= Kalman filtering in information from is
called information filtering
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Kalman Filter Algorithm

Kalman_filter (u; 1,1, us, 2¢):

K, =%, CHCy 5 CF + Q)
pe = e + Ke(ze — Cy jir)

Zt — (I— Kt Ct) Zt

return fig, 2
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Prediction Step (1)

» Transform ¥, = A, ¥, Al + R,
= Using »,_, =}
= Leads to

Q, = (A, QY AT + R)™!
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Prediction Step (2)

= Transform [ = A pui—1 + Bt uy

= Using  jig—1 = ;&1
= Leads to

& = (A pe—1 + B uy)
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Information Filter Algorithm

1: Information_filter(&; 1,1, us, 2¢):

2: Q; = (A, Q1 AT + Ry) ™!
& = Qt(At (2 11 Et—1 + Bt uy)

&0

@)
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xt) =1 p(2e | 21) bel(ay)

, 1 _ 1 _ _ _
= 1 exp (—5 (2t = Coare)" Q" (20 — Ctﬂit)) exp (—5 (@ — )" Tyt (4 — Mt))
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xi) =1 p(2t | 1) bel(wy)
= 7 exp (—% (2t — Coa)" Q7" (20 — Ctilft)) exp (—5 (we — )" Sp " (24 — Mt))

1 1 _
= 1 exp <—§ (2t — Crae)" Q" (22 — Crry) — 3 (ze — )" S0 (2 — Mt))
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Correction Step

= Use the Bayes filter measurement
update and replace the components

bel(xi) =1 p(2t | 1) bel(wy)
= 77/ exp (—% (Zt - Ctxt)T Qt—l (Zt — Ctxt)) exp (—% (ﬂft — ﬂt)T it_l (xt - Mt))

1 1 _
= 1 exp <—§ (2t — Crae)" Q" (22 — Crry) — 3 (ze — )" S0 (2 — Mt))

1 _ _ 1 - -
= 7" exp (—5 el Cr Q7 Croy+al CF QY 2 — 5 zl Qg + a:tTft>
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Correction Step

= Use the Bayes filter measurement

update and replace the components

bel(xt) =1 p(2e | 21) bel(ay)

, 1 _ 1 - _ .
n €xp (—5 (2t — Ctxt)T Q; ! (2t — Ctilft)) exp (—5 (s — Mt)T 2 ! (¢ — Mt))

1 1 _
n' exp <—§ (2t — Crae)" Q" (22 — Crry) — 3 (ze — )" S0 (2 — Mt))

1 _ _ 1 ~ -
n" exp (—5 el Cr Q7 Croy+al CF QY 2 — 3 zl Qg + :UtTft>

2 \ . 7 \ >4

1 B _ B .
n" exp | —= 1‘? [Cér Q; LCy+ O] x¢ + CE{ [C;F Q; L2+ ft])
o &
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Correction Step

= This results in a simple update rule

N\ 7 \ . 7

Ve N

Qy £t

k

O, = Cl o7t Cy+
&t CtT Qt_l 2t + &

1 _ _
bel(xy) = m exp (2 :E;;F [C;‘F Qt_l Cy + Q] x4 +£13tT [C;‘F Qt_l 2t ‘l‘ft])
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Information Filter Algorithm

1: Information_filter(&; 1,1, us, 2¢):

2: Q; = (A, Q1 AT + Ry) ™!
3: ft Qt(At Qt 11 ft 1 T+ Bt ’U,t)

4: Q; =CF Q' Cy+
3 &=CF Qe+ &
0: return &, ()




Prediction and Correction

* Prediction
Q, = (A, Q1 A+ R)?
& = Qt(At Qt__ll Ei—1 + By uy)

= Correction
Q. = Cl Q7 Cy+Q,
¢ = Cf Qt_l Zt‘|‘§t

Discuss differences to the KF!
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Complexity

= Kalman filter

= Efficient prediction step: O(n2)*

= Costly correction step:  O(n? + k24)
= Information filter

= Costly prediction step:  O(n?**)

= Efficient correction step: O(n?)*

= Transformation between both
parameterizations is costly: oO(n2?%)

*Potentially faster, especially for SLAM; depending on type of
controls and observations
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Extended Information Filter

= As the Kalman filter, the information
filter suffers from the linear models

= The extended information filter (EIF)
uses a similar trick as the EKF

* Linearization of the motion and
observation function
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Linearization of the EIF

= Taylor approximation analog to the
EKF (see Chapter 4)

glug, xe—1) =~ glug, pe—1) + Gt (xe—1 — fe—1)
h(xy) h(ie) + Hy (¢ — fig)

¢

= with the Jacobians G, and H,

27



Prediction: From EKF of EIF

= Substitution of the moments brings us
from the EKF

M = Gy Xy G;r + Ry
e = gug, phe—1)
= to the EIF
Q= (G Gf +Ry)™

Qt g(uta Qt__ll ft—l)

3
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Prediction: From EKF of EIF

1: Extended_Kalman_filter(u; 1,>: 1, us, 2¢):
20 e = g(ut, fle—1)

3: Zt — Gt Zt—l G? -+ Rt

1: Extended_information_filter(&; 1,2 1, us, 2¢):

i1 = Q1 &y

Q, = (G L GT 4+ R) ™!
e = g(ue, pe—1)

Et = )y [
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Correction Step of the EIF

= As from the KF to IF transition, use
substitute the moments in the

measurement update

1

bel(xy) = n exp (—5 (2t — h(ite) — Hy (24 — ,L_Lt))T Qt_l

(2t — h(ie) — Hy (0 — it)) — %(ﬂft — fig)" By (e — ﬂt))

= This leads to
Qt — Qt —|— Hg Qt_l Ht
& = G+ H Q' (2 — () + Hy fit)
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Extended Information Filter

1:

Extended_information_filter(&; 1, Q¢ 1, us, 2¢):

Ht—1 = Qt 11 ft 1

Q; = (G Y GT + Ry) ™!

pt = Q(Ut fht—1)

Et = 0y [y

€y :_Qt +HE Q7!

& =&+ HE Q' (2 — h(jig)+Hy fiy)
return &;, ()
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EIF vs. EKF

» The EIF is the EKF in information form

= Complexities of the prediction and
correction steps can differ

= Same expressiveness than the EKF
» Unscented transform can also be used

= Reported to be numerically more
stable than the EKF

= In practice, the EKF is more popular
than the EIF
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Summary

= Gaussians can also be represented
using the canonical parameterization

= Allow for filtering in information form

= Information filter vs. Kalman filter

= KF: efficient prediction, slow correction
= [F: slow prediction, efficient correction

= The application determines which filter
is the better choice!

33



Literature

Extended Information Filter

= Thrun et al.: “"Probabilistic Robotics”,
Chapter 3.5
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
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