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Robot Mapping  

Grid Maps 

Gian Diego Tipaldi, Wolfram Burgard 
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Features vs. Volumetric Maps 

Courtesy: E. Nebot Courtesy: D. Hähnel 
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Features 

 So far, we only used feature maps 

 Natural choice for Kalman filter-based 
SLAM systems 

 Compact representation 

 Multiple feature observations improve 
the landmark position estimate (EKF) 
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Grid Maps 

 Discretize the world into cells 

 Grid structure is rigid  

 Each cell is assumed to be occupied or 
free space 

 Non-parametric model 

 Large maps require substantial 
memory resources 

 Do not rely on a feature detector 
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Example 
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Assumption 1 

 The area that corresponds to a cell is 
either completely free or occupied 

free  
space 

occupied 
space 
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Representation 

 Each cell is a binary random 
variable that models the occupancy 
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Occupancy Probability 

 Each cell is a binary random 
variable that models the occupancy 

 Cell is occupied: 

 Cell is not occupied: 

 No knowledge: 
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Assumption 2 

 The world is static (most mapping 
systems make this assumption) 

always occupied 

always free space 
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Assumption 3 

 The cells (the random variables) are 
independent of each other 

no dependency 
between the cells 
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Representation 

 The probability distribution of the map 
is given by the product over the cells 

cell map 
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Representation 

 The probability distribution of the map 
is given by the product over the cells 

example map 
(4-dim state) 

4 individual cells 
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Estimating a Map From Data 

 Given sensor data      and the poses  
      of the sensor, estimate the map 

binary random variable 

Binary Bayes filter 
(for a static state) 
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Static State Binary Bayes Filter 



15 

Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 
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Static State Binary Bayes Filter 

Do exactly the same for the opposite event:  
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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Static State Binary Bayes Filter 

 By computing the ratio of both 
probabilities, we obtain: 
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From Ratio to Probability 

 We can easily turn the ration into the 
probability 
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From Ratio to Probability 

 Using                       directly leads to 

For reasons of efficiency, one performs  
the calculations in the log odds notation 
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Log Odds Notation 

 The log odds notation computes the 
logarithm of the ratio of probabilities 
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Log Odds Notation 

 Log odds ratio is defined as 

 

 

 and with the ability to retrieve  
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Occupancy Mapping  
in Log Odds Form 

 The product turns into a sum 

 

 

 

 

 or in short 



28 

Occupancy Mapping Algorithm 

highly efficient, we only have to compute sums 
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Inverse Sensor Model for Sonar 
Range Sensors 

In the following, consider the cells  
along the optical axis (red line) 

Courtesy: Thrun, Burgard, Fox 
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Occupancy Value Depending on 
the Measured Distance 

z+d1 z+d2 

z+d3 
z 

z-d1 

measured dist. 

prior 

distance between the cell and the sensor 
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z+d1 z+d2 

z+d3 
z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 

measured dist. 

prior 

“free” 

distance between the cell and the sensor 
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z+d1 z+d2 

z+d3 
z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 

distance between the cell and the sensor 

measured dist. 

prior 

“occ” 
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Occupancy Value Depending on 
the Measured Distance 

z+d1 z+d2 

z+d3 
z 

z-d1 

measured dist. 

prior 
“no info” 

distance between the cell and the sensor 
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The Model in More Details  
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Example: Incremental Updating  
of Occupancy Grids  
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Resulting Map Obtained with 24 
Sonar Range Sensors 
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Inverse Sensor Model for Laser 
Range Finders 
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Occupancy Grid Mapping 

 Moravec and Elfes proposed 
occupancy grid mapping in the mid 
80’ies 

 Developed for noisy sonar sensors 

 Also called “mapping with know poses” 
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Occupancy Grid Mapping 

 Moravec and Elfes proposed 
occupancy grid mapping in the mid 
80’ies 

 Developed for noisy sonar sensors 

 Also called “mapping with know poses” 

 

 Lasers are coherent and precise 

 Approximate the beam as a “line” 
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Maximum Likelihood Grid Maps 

 Compute values for m that maximize 
 

 

 

 

 

 The individual likelihood are Bernoulli 

 

since     independent 
and only depend on  
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Maximum Likelihood Grid Maps 

 Collecting the terms for each cell: 
 

 

 where we have 
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Maximum Likelihood Grid Maps 

 Collecting the terms for each cell: 
 

 

 where we have 
 

 

 

 Setting the gradient to zero we obtain 
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Posterior Distribution of Cells 

 Maximum likelihood neglects the prior 

 We would like to compute 

 

 

 Likelihood is still Bernoulli 

 Conjugate prior: Beta distribution 
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Posterior Distribution of Cells 

 How does the posterior look like? 

 Conjugate prior: Beta distribution 

 
 

 Likelihood Bernoulli 
 

 

 Posterior 

? 
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Posterior Distribution of Cells 

 How does the posterior look like? 

 Conjugate prior: Beta distribution 

 
 

 Likelihood Bernoulli 
 

 

 Posterior 
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Posterior Estimates of Cells 

 Maximum a posteriori (mode of Beta) 
 

 

 Expected value (unbiased) 
 

 

 Maximum likelihood (revised) 

 Maximum a posteriori with uniform prior 

 Uniform prior for Beta 

? 
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Posterior Estimates of Cells 

 Maximum a posteriori (mode of Beta) 
 

 

 Expected value (unbiased) 
 

 

 Maximum likelihood (revised) 

 Maximum a posteriori with uniform prior 

 Uniform prior for Beta 

? 
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Posterior Estimates of Cells 

 Maximum a posteriori (mode of Beta) 
 

 

 Expected value (unbiased) 
 

 

 Maximum likelihood (revised) 

 Maximum a posteriori with uniform prior 

 Uniform prior for Beta 

? 
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Posterior Estimates of Cells 

 Maximum a posteriori (mode of Beta) 
 

 

 Expected value (unbiased) 
 

 

 Maximum likelihood (revised) 

 Maximum a posteriori with uniform prior 

 Uniform prior for Beta 
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Occupancy Grids 
From Laser Scans to Maps  

Courtesy: D. Hähnel 
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Example: MIT CSAIL 3rd Floor 
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Uni Freiburg Building 106 
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Occupancy Grid Map Summary 

 Occupancy grid maps discretize the 
space into independent cells 

 Each cell is a binary random variable 
estimating if the cell is occupied 

 Static state binary Bayes filter per cell 

 Mapping with known poses is easy 

 Log odds model is fast to compute 

 No need for predefined features 
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Literature 

Static state binary Bayes filter 

 Thrun et al.: “Probabilistic Robotics”, 
Chapter 4.2 

Occupancy Grid Mapping 

 Thrun et al.: “Probabilistic Robotics”, 
Chapter 9.1+9.2 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 
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