Robot Mapping

FastSLAM - Feature-Based SLAM
with Particle Filters

Gian Diego Tipaldi, Wolfram Burgard



Particle Filter

= Non-parametric recursive Bayes filter

= Posterior is represented by a set of
weighted samples

= Can model arbitrary distributions
= Works well in low-dimensional spaces

= 3-Step procedure
= Sampling from proposal
= Importance Weighting
= Resampling



Particle Filter Algorithm

1. Sample the particles from the
proposal distribution
:U,[tj] ~m(ze|...)

2. Compute the importance weights

target(xl[tj])

w,gj] — 7]
proposal(x;’")

1. Resampling: Draw sample ; with

probability " and repeat J times



Particle Representation

= A set of weighted samples

.....

= Think of a sample as one hypothesis
about the state

» For feature-based SLAM:
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poses landmarks




Dimensionality Problem

Particle filters are effective in low
dimensional spaces. The likely regions
of the state space need to be covered
with samples.

Higher dimensions -> more samples.

_ T
L = (ajlitaml,ajaml,ya'°°7mM,CE7mM,y)
high-dimensional



Can We Exploit Dependencies
Between the Different
Dimensions of the State Space?

L1ty TNy oo, TIUDS



If We Know the Poses of the
Robot, Mapping is Easy!

L1ty TNy oo, TIUDS
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Key Idea
L1ty TNy oo, TIUAg

/

If we use the particle set only to model
the robot’s path, each sample is a path
hypothesis. For each sample, we can
compute an individual map of landmarks.




Rao-Blackwellization

= Factorization to exploit dependencies
between variables:

p(a,b) = p(b|a)p(a)

= If p(b| a) can be computed in closed
form, represent only p(a) with samples
and compute p(b | a) for every sample



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

p($0:t>m1:M | Zl:taul:t> —

First introduced for SLAM by Murphy in 1999
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Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

| v/

p($02t7m12M | 214, UL ) =
p(fEO:t ‘ Zl:tvulit) P(ml:M ‘ xOItvzlit)

T T

path posterior map posterior

First introduced for SLAM by Murphy in 1999



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p($0:t,m1:M | Zl:taulzt) —
p(ZUO:t | Zl:taulit) p(mle | LQ:t; Zl:t)

/

How to compute this term efficiently?

First introduced for SLAM by Murphy in 1999 12



Revisit the Graphical Model
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Courtesy: Thrun, Burgard, Fox 13




Revisit the Graphical Model

known

v
X, X, -( X, :-—
() |y
@ OBNS
S () (@

Courtesy: Thrun, Burgard, Fox 14




Landmarks are Conditionally
Independent Given the Poses

() | (us
e
(m,) (m)  (m)

Landmark variables are all disconnected

(i.e. independent) given the robot’s path .




Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(zo:t, m1: s \ 214, ULit) =
p(CEO:t | Zl:taulit) p(ml:M | ZEOZtaZth)

/

Landmarks are conditionally
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002 16



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(CUO:t,ml:M | Zl:taul:t) —

p(iUO:t ‘ Zl:t7u12t) p(mle | xO:tazl:t)
M

p(x0:t | 21:4, UT:t) H p(m; | To:t, 21:¢)
=1

First exploited in FastSLAM by Montemerlo et al., 2002 17



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(CUO:t,ml:M | 214, Uleg) =
p(iUO:t ‘ Zl:t7u12t) p(mle | xO:tazl:t)

M
p(x0:t | 21:4, UT:t) H p(m; | To:t, 21:¢)
(=] —

/

2-dimensional EKFs!

First exploited in FastSLAM by Montemerlo et al., 2002 18



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(CUO:t,ml:M | Zl:taul:t) —

p(iUO:t ‘ Zl:t7u12t) p(mle | xO:tazl:t)
M

p(x0:t | 21:4, UT:t) H p(m; | To:t, 21:¢)
particle filter similar to MCL /

2-dimensional EKFs!

First exploited in FastSLAM by Montemerlo et al., 2002 19



Modeling the Robot’s Path

= Sample-based representation for
p(xo:t | 21:4, U1:t)
= Each sample is a path hypothesis

0 T1 T

) 1

starting location, pose hypothesis
typically (0,0,0) attime t=1

= Past poses of a sample are not revised

= No need to maintain past poses in the
sample set

20



FastSLAM

= Proposed by Montemerlo et al. in 2002
= Fach landmark is represented by a 2x2 EKF

= Each particle therefore has to maintain M
individual EKFs

Particle
1

Landmark M

8
<
SN

Landmark 1 § Landmark 2

Landmark 1 | Landmark 2 Landmark M

Particle

2 xayae

Landmark M
21

Particle
N

Landmark 1 | Landmark 2

z,y,0



FastSLAM - Action Update

Particle #1

Particle #2

Particle #3

Cx

Landmark 1

2x2 EKF

Landmark 2

2x2 EKF

7~
COu

rtesy

. M. Montemerlo 2>



FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

Landmark 1

2x2 EKF

Landmark 2

2x2 EKF

7~
COu

rtesy

. M. Montemerlo 23



FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1

7~
COu

rtesy

. M. Montemerlo >4



FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

-

Update map
of particle 1
)

O] Update map
ZN of particle 2

O P

. | @&

N E:. Update map
MY of particle 3
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Key Steps of FastSLAM 1.0

= Extend the path posterior by sampling
a new pose for each sample

)~ p(ay | o) u)

= Compute particle weight % °bsei"a“°“
whtl = 127Q|72 exp {—1(z — 2MNTQ™ (2 — 21}
?

measurement covariance

= Update belief of observed landmarks
(EKF update rule)

= Resample

26



FastSLAM 1.0 - Part 1

1: FastSLAM1.0_known_correspondence(z:, ct, U, Xi—1):

2: for k=1 to N do // loop over all particles
3: Let <:137[5k_]1, </1J[1’f]t_1, Z[llf]t_1> o > be particle k in X;_1
L LIH 5]

- e~ (@ | Ty, ue) // sample pose

27



FastSLAM 1.0 - Part 1

1: FastSLAM1.0_known_correspondence(z:, ct, U, Xi—1):

2: for k=1 to N do
3: Let <a:£ ]1, <,u[1k}S 1
4: ka] p(z: | xz[e’ﬂput)
5: ] = cCt
6: if feature 9 never seen before
7 ,LLJ t =h" (z xEk])

k
8: H = B (ulf t, i)

—1

9: 21[7.,71 =H 'Q, (H H
10: w = Do
11: else

// loop over all particles

Z[lk]_1> o > be particle k in X;_1

// sample pose

// observed feature

// initialize mean

// calculate Jacobian

// initialize covariance

// default importance weight




FastSLAM 1.0 - Part 2

11: else

12: (uﬁ, Z%) = EKF-Update(...) // update landmark
1 1 ) N )

13: W = [27QI % exp {5 (=~ 8)TQ ! (o0 — 2 ]

) t

measurement cov. Q=H E“ft]_l HT +Q, exp.observation

J

14: endif
15: for all unobserved features j' do

k k k k
16: (uﬁ,{t, Eg.,],t> = (,udl[j,],t_l, Zg,{t_1> // leave unchanged
17: endfor
18: endfor
19: X; = resample (<:£7[5k], <,ud[1kl, E[lk15> Ve ,w[k]> )

’ ’ k=1,....N

20: return X;

29



FastSLAM 1.0 - Part 2 (long)

11:

19:
20:

21:

23:
24:

25:
206:

endif
for all unobserved features j' do

k k k k
<:U’[ ] Egl],t> — <:UJ£'/],75_17E[ ]

j/7t7 jlat_1>
endfor

endfor

X: = resample (<az£k], <,u[1kl, Z[lkl> yoe ,w[k]> )
’ ’ k=1,...,N

return X

// measurement prediction
// calculate Jacobian

// measurement covariance

// calculate Kalman gain

// update mean
// update covariance

// leave unchanged

.....

30



FastSLAM iIn Action

°
L
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: .
Z — = .

Courtesy: M. Montemerlo 31



The Weight is a Result From the
Importance Sampling Principle

= Importance weight is given by the
ratio of target and proposal in z*!

= See: importance sampling principle

k] _ target(z!*!)

w proposal(zlkl)

32



The Importance Weight
= The target distribution is

p(ajlzt ‘ Zl:tpulzt)
= The proposal distribution is

p(l’lzt Z1:t—1; Ul:t)

= Proposal is used step-by-step
p(T1:t | 21:6—1, U1:t)
— p(fb‘t \ mt—l,ut) p(£1:t-1 \ Zl:t—laulzt—l)

—_— —— —,——
from X;_1 to X Xi_1

33



The Importance Weight

%]
Ik target(z!")
proposal(zl*)

p(:l?l 4 ‘ Z1:t, UT: t)
- k] k]
p(ﬂ?t ! $t—1;ut) p(x ! Z1:t—1,U1:t—1)

1:t—1

34



The Importance Weight

{ t (¥l
I 1 arget(z'™)

proposal(z!k])

k
p(aj[ll ‘ Z1:ts ul:t)

k k
p($7[5 | ’ Tt—1 Ut) p(x[ln]f_l ’ Zl:t—laulzt—l)

Bayes rule + factorization

35



The Importance Weight

t t (¥
Wikl — arget(z'™)

proposal (z!k])

p(@) | 21, uee)

p( !flit 17“15) (5131,5 1!2'175 1, Ul:t— 1)

k k
np(z | 2, 21 0) plat® | 2l

k k
p(xw[f | | 337[5—]17/“75)

17ut)

]
t—1 Zl:t—1>U1:t—1)
] . )
41 1:t—1y Ul:t—1

p(x
p(x

N ITES




The Importance Weight

t t (¥
Wikl — arget(z'™)

proposal(z!k])

p(zf ”,ult)

p( !flit 17Ut) ( 1!Z1t 1, Ul:t— 1)

k|l
np(zt’$1t721t 1)% Wi]laut>

51—
17(3”7;, I""t 19 Uy)

]Q(-CU—[}Ijel——%’ffila UT:t— )
Zl(all[lﬂer—%ﬂ*u UT:t— 1)
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The Importance Weight

t t (¥
Wikl — arget(z'™)

proposal(z!k])

p(zf ”,ult)

p( !flit 17Ut) ( 1!Z1t 1, Ul:t— 1)

k|l
np(zt’$1t721t 1)% Wi]laut)

51—
17(3”7;, I""t 19 Uy)

Q@-[l—ljel——%’fﬁu UT:t— )
Zl(azl[lﬂer——%ﬁ*u UT:t— 1)

k
— 77]?(215 \ %;1721.75—1)
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The Importance Weight

= [ntegrating over the pose of the
observed landmark leads to

k
7 p(zt | 37[1;7]57 Zl:t—l)

k k
— 7] /p(zt ’ x[l;lvzl:t—lamj) p(mj ‘ x[l;lazlzt—l

) dmy;

39



The Importance Weight

= [ntegrating over the pose of the
observed landmark leads to

40



The Importance Weight

= [ntegrating over the pose of the
observed landmark leads to

Wkl

k
— 77]0(275 | 37[1;7]57»21:15—1)

k k
. / p(z | @), 11, my) pmy | 2, 21 1) dim,

n /p(zt | xgk]»mj

\

\\_/
(=3
N
S
&|—|
i
o~ —
}—\

N
}—\

T

}—l
N—"
3
O

N -~

N (z¢;21%,Q4) N(mjmg-k] vE'ng_J
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The Importance Weight
= This leads to

k k
wtl =g /g(mj | 113[1;1_1,21:t—1)J p(zt | 7y ],mj)J dmy;
\ N(mgpl 5 ), N (24;215,Q¢)
K—H

Q=Hy, % HL + Qy

|

measurement covariance (pose uncertainty of
the landmark estimate plus measurement noise)

42



The Importance Weight
= This leads to

k
wtl =g /p(mj | 215 21e-1) P2 | $7[5 ' my) dm;

\ .

N

N (mysp_ B _) N(z:24,Q1)

\ J,t—17 J /
¢

—
Q=Hy S)%_ 1 Hi, + Q.

1 1 >
wl ~ |27 Q|72 exp{—§(zt—z[k])TQ ! (zt—é[k])}

43



FastSLAM 1.0 - Part 2

11:
12:

13:

14:
15:

16:

17:
18:

19:
20:

endif

for all unobserved features j' do
k k k k
i, =) =

3 ot—10 S 1)

// leave unchanged

endfor
endfor

X; = resample (<:1:£k], <,ud[1kl, E[lkl> e ,w[k]> )
’ ’ k=1,...,N

return X

44



Data Association Problem

= Which observation belongs to which

landmark?
X

;R
/

%
N

/
/

&

= More than one possible association

= Potential data associations
depend on the pose of the robot

Courtesy: M. Montemerlo 45



Particles Support for Multi-
Hypotheses Data Association

= Decisions on a per- Vo
particle basis

= Robot pose erroris . -,
factored out of data =~ ':*-}.(\ﬁ
association decisions s

Courtesy: M. Montemerlo 4¢



Per-Particle Data Association

Cxl

Was the observation

N

N

generated by the red

.

7

or by the brown
landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

Courtesy: M. Montemerlo 47



Per-Particle Data Association

Cx

Was the observation

N

generated by the red

.

7

or by the brown
landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick an random association weighted by

the observation likelihoods

= If the probability for an assignment is too low,

generate a new landmark

Courtesy: M. Montemerlo 4§



Per-Particle Data Association

Cx

.

= Multi-modal belief

Was the observation
generated by the red
or by the brown
landmark?

= Pose error is factored out of data

association decisions

= Simple but effective data association
= Big advantage of FastSLAM over EKF

Courtesy: M. Montemerlo 49



Results — Victoria Park

= 4 km traverse

= < 2.5 mRMS
position error

= 100 particles

Blue = GPS e R e A
= FastSLAM .« MUl A
Courtesy: M. Montemerlo 50



Results - Victoria Park (Video)

Courtesy: M. Montemerlo
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Results (Sample Size)

Accuracy of FastSLAM vs. the EKF on Simulated Data

Y — —
— FastSLAM
- - EKF
20 -
L
@
L]
£ 15}
S
S
LLJ
a
@ 10f
o
w
=
r
5_
ol __--__{___.-t-h__ — —7T I
il L i
10" 10’ 10° 10°

Number of Particles  Courtesy: M. Montemerlo 5>



Results (Motion Uncertainty)

Robot RMS Position Error (m)

70
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Comparison of FastSLAM and EKF Given Motion Ambiguity
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Error Added to Rotational Velocity (std.)

Courtesy: M. Montemerlo 53



FastSLAM 1.0 Summary

= Use a particle filter to model the belief

= Factors the SLAM posterior into low-
dimensional estimation problems

= Model only the robot’s path by
sampling

= Compute the landmarks given the path

= Per-particle data association

= No robot pose uncertainty in the per-
particle data association

54



FastSLAM Complexity - Simple
Implementation

= Update robot particles (’)(N)
based on the control

= Incorporate an observation O(N)
into the Kalman filters

= Resample particle set O(NM)

N = Number of particles O(NM)

M = Number of map features

55



A Better Data Structure for
FastSLAM

j=17?

j=47?

j<37?

T

j=<57?

j=6 7

ATANYA

k1

M1: Mzs

[k ;ik ]

! M3:]2[k | M4: 4 Wgs <5 Me:

j= 77

vy

| M7s 7 Ha:

Courtesy: M. Montemerlo 5g



A Better Data Structure for
FastSLAM =47

new particle

old particle

j=17? j=37?

RANA

R BRY WD MR N whEY

Courtesy: M. Montemerlo
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FastSLAM Complexity

= Update robot particles O(N)
based on the control

» Incorporate an observation O(N log M)
into the Kalman filters

= Resample particle set O(N log M)

N = Number of particles O(N log M)

M = Number of map features

58



Memory Complexity

Memory (MB)

120

100

80

60

40

20

Memory Usage of Log( ) FastSLAM VS. Lmear FastSLAM — 100 Particles

- - Log(N] FastSLAM1 0 |
—— Linear FastSLAM 1.0

- o o e = = = =

2.5 3 3.5 4 45 5
Number of Landmarks x 10*

Courtesy: M. Montemerlo &5g



FastSLAM 1.0

» FastSLAM 1.0 uses the motion model
as the proposal distribution

<] |~]

Ly~ p(aj |xt 17“75)

» Is there a better distribution to
sample from?

[Montemerlo et al., 2002] 60



FastSLAM 1.0 to FastSLAM 2.0

» FastSLAM 1.0 uses the motion model
as the proposal distribution

<] |~]

Ly~ p(aj |xt 17“75)

= FastSLAM 2.0 considers also the
measurements during sampling

= Especially useful if an accurate sensor
is used (compared to the motion
noise)

[Montemerlo et al., 2003] 61



FastSLAM 2.0 (Informally)

= FastSLAM 2.0 samples from
a?l[ﬁk] ™~ p(ajt ‘ xglj_lvulztvﬁ)

= Results in @ more peaked proposal
distribution

= | ess particles are required
= More robust and accurate
= But more complex...

[Montemerlo et al., 2003] 62



FastSLAM Problems

= How to determine the sample size?

= Particle deprivation, especially when
closing (multiple) loops

Particles share common history here _'_,.t;»_-;. R ®

i
L] -’ - )
R e I )
-FastSLAM 2.0 .. °

M. Montemerlo

Courtesy

()]
OV



FastSLAM Summary

= Particle filter-based SLAM

= Rao-Blackwellization: model the
robot’s path by sampling and compute
the landmarks given the poses

= Allow for per-particle data association

= FastSLAM 1.0 and 2.0 differ in the
proposal distribution

= Complexity O(N log M)

64



FastSLAM Results

= Scales well (1 million+ features)

= Robust to ambiguities in the data
association

= Advantages compared to the classical
EKF approach (especially with non-
linearities)

65



Literature

FastSLAM

Thrun et al.: “Probabilistic Robotics”,
Chapter 13.1-13.3 + 13.8 (see erratal)

Montemerlo, Thrun, Kollar, Wegbreit:
FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping
Problem, 2002

Montemerlo and Thrun: Simultaneous
Localization and Mapping with Unknown
Data Association Using FastSLAM, 2003
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
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