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Robot Mapping  

FastSLAM – Feature-Based SLAM 
with Particle Filters 

Gian Diego Tipaldi, Wolfram Burgard 
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Particle Filter 

 Non-parametric recursive Bayes filter 

 Posterior is represented by a set of 
weighted samples 

 Can model arbitrary distributions 

 Works well in low-dimensional spaces 

 3-Step procedure 

 Sampling from proposal 

 Importance Weighting 

 Resampling 
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Particle Filter Algorithm 

1. Sample the particles from the 

proposal distribution 

 

2. Compute the importance weights 

 

 

1. Resampling: Draw sample    with 

probability      and repeat    times 
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Particle Representation 

 A set of weighted samples 

 

 

 Think of a sample as one hypothesis 
about the state 

 For feature-based SLAM: 

poses landmarks 
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Dimensionality Problem 

Particle filters are effective in low 
dimensional spaces. The likely regions 
of the state space need to be covered 
with samples.  

Higher dimensions -> more samples. 

 

 
high-dimensional 
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Can We Exploit Dependencies 
Between the Different 

Dimensions of the State Space? 
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If We Know the Poses of the 
Robot, Mapping is Easy! 
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Key Idea 

If we use the particle set only to model  
the  robot’s path, each sample is a path 
hypothesis. For each sample, we can  

compute an individual map of landmarks. 
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Rao-Blackwellization 

 Factorization to exploit dependencies 
between variables: 

 

 

 If           can be computed in closed 
form, represent only       with samples    
and compute           for every sample 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

path posterior map posterior 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First introduced for SLAM by Murphy in 1999 

How to compute this term efficiently? 
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Revisit the Graphical Model 

Courtesy: Thrun, Burgard, Fox 
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Revisit the Graphical Model 

known 

Courtesy: Thrun, Burgard, Fox 
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Landmarks are Conditionally 
Independent Given the Poses 

Landmark variables are all disconnected  
(i.e. independent) given the robot’s path  
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

Landmarks are conditionally  
independent given the poses 

First exploited in FastSLAM by Montemerlo et al., 2002 
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 Factorization of the SLAM posterior 

 

First exploited in FastSLAM by Montemerlo et al., 2002 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First exploited in FastSLAM by Montemerlo et al., 2002 

particle filter similar to MCL 

2-dimensional EKFs! 
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 Sample-based representation for 

 

 Each sample is a path hypothesis 

 

 

 

 Past poses of a sample are not revised 

 No need to maintain past poses in the 
sample set 

Modeling the Robot’s Path 

starting location, 
typically (0,0,0) 

pose hypothesis 
at time t=1 
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FastSLAM 

 Proposed by Montemerlo et al. in 2002 

 Each landmark is represented by a 2x2 EKF 

 Each particle therefore has to maintain M 
individual EKFs 

 

Landmark 1 Landmark 2 Landmark M … 

Landmark 1 Landmark 2 Landmark M … 
Particle 

1 

Landmark 1 Landmark 2 Landmark M … 
Particle 

2 

Particle 
N 

…
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FastSLAM – Action Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 

2x2 EKF 

Landmark 2 

2x2 EKF 

Courtesy: M. Montemerlo 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 

2x2 EKF 

Landmark 2 

2x2 EKF 

Courtesy: M. Montemerlo 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Weight = 0.8 

Weight = 0.4 

Weight = 0.1 

Courtesy: M. Montemerlo 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Update map  

of particle 1 

Update map  

of particle 2 

Update map  

of particle 3 

Courtesy: M. Montemerlo 
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Key Steps of FastSLAM 1.0 

 Extend the path posterior by sampling 
a new pose for each sample  

 
 Compute particle weight 

 

 
 Update belief of observed landmarks 

(EKF update rule) 

 Resample  

 

measurement covariance 

exp. observation 
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FastSLAM 1.0 – Part 1 
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FastSLAM 1.0 – Part 1 
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FastSLAM 1.0 – Part 2 

measurement cov. exp. observation 
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FastSLAM 1.0 – Part 2 (long) 

EKF  
update 
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FastSLAM  in Action 

Courtesy: M. Montemerlo 
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The Weight is a Result From the 
Importance Sampling Principle  

 Importance weight is given by the 
ratio of target and proposal in 

 See: importance sampling principle 
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The Importance Weight 

 The target distribution is 

 
 The proposal distribution is 

 
 Proposal is used step-by-step 
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The Importance Weight 
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The Importance Weight 

Bayes rule + factorization 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 

 Integrating over the pose of the 
observed landmark leads to  
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The Importance Weight 

 Integrating over the pose of the 
observed landmark leads to  
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The Importance Weight 

 This leads to 

measurement covariance (pose uncertainty of  
the landmark estimate plus measurement noise) 
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The Importance Weight 

 This leads to 
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FastSLAM 1.0 – Part 2 
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Data Association Problem 

 Which observation belongs to which 
landmark? 

 

 

 

 

 More than one possible association 

 Potential data associations  
depend on the pose of the robot  

 

 

Courtesy: M. Montemerlo 
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Particles Support for Multi-
Hypotheses Data Association 

 Decisions on a per-
particle basis 
 

 Robot pose error is 
factored out of data 
association decisions 

Courtesy: M. Montemerlo 
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Per-Particle Data Association 

Was the observation 

generated by the red 
or by the brown  
landmark? 

P(observation|red) = 0.3 P(observation|brown) = 0.7 

Courtesy: M. Montemerlo 
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Per-Particle Data Association 

P(observation|red) = 0.3 P(observation|brown) = 0.7 

 Two options for per-particle data association 

 Pick the most probable match 

 Pick an random association weighted by  
the observation likelihoods 

 If the probability for an assignment is too low, 
generate a new landmark 

 

Was the observation 

generated by the red 
or by the brown  
landmark? 

Courtesy: M. Montemerlo 
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Per-Particle Data Association 

 Multi-modal belief  

 Pose error is factored out of data 
association decisions 

 Simple but effective data association 

 Big advantage of FastSLAM over EKF 

 

 

Was the observation 

generated by the red 
or by the brown  
landmark? 

Courtesy: M. Montemerlo 
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Results – Victoria Park 

 4 km traverse 

 < 2.5 m RMS 
position error 

 100 particles 

Blue = GPS 

Yellow = FastSLAM 
Courtesy: M. Montemerlo 



51 

Results – Victoria Park (Video) 

Courtesy: M. Montemerlo 
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Results (Sample Size) 

Courtesy: M. Montemerlo 
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Results (Motion Uncertainty) 

Courtesy: M. Montemerlo 
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FastSLAM 1.0 Summary 

 Use a particle filter to model the belief 

 Factors the SLAM posterior into low-
dimensional estimation problems 

 Model only the robot’s path by 
sampling 

 Compute the landmarks given the path 

 Per-particle data association 

 No robot pose uncertainty in the per-
particle data association  
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FastSLAM Complexity – Simple 
Implementation 

 Update robot particles  
based on the control 

 Incorporate an observation 
into the Kalman filters 

 Resample particle set 

N = Number of particles 

M = Number of map features 

O(N) 

O(N) 

O(N M) 
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A Better Data Structure for 
FastSLAM 

Courtesy: M. Montemerlo 
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A Better Data Structure for 
FastSLAM 

Courtesy: M. Montemerlo 
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FastSLAM Complexity 

 Update robot particles 
based on the control 

 Incorporate an observation 
into the Kalman filters 

 Resample particle set 

N = Number of particles 

M = Number of map features 

O(N log(M)) 

O(N log(M)) 



59 

Memory Complexity 

Courtesy: M. Montemerlo 



60 

FastSLAM 1.0 

 FastSLAM 1.0 uses the motion model 
as the proposal distribution 

 

 

 Is there a better distribution to 
sample from? 

[Montemerlo et al., 2002] 
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FastSLAM 1.0 to FastSLAM 2.0 

 FastSLAM 1.0 uses the motion model 
as the proposal distribution 

 

 

 FastSLAM 2.0 considers also the 
measurements during sampling 

 Especially useful if an accurate sensor 
is used (compared to the motion 
noise) 

[Montemerlo et al., 2003] 
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FastSLAM 2.0 (Informally) 

 FastSLAM 2.0 samples from 

 

 

 Results in a more peaked proposal 
distribution 

 Less particles are required 

 More robust and accurate 

 But more complex… 

 

 

 

[Montemerlo et al., 2003] 
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FastSLAM Problems 

 How to determine the sample size? 

 Particle deprivation, especially when 
closing (multiple) loops 

FastSLAM 1.0 FastSLAM 2.0 
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FastSLAM Summary 

 Particle filter-based SLAM 

 Rao-Blackwellization: model the 
robot’s path by sampling and compute 
the landmarks given the poses 

 Allow for per-particle data association 

 FastSLAM 1.0 and 2.0 differ in the 
proposal distribution 

 Complexity  
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FastSLAM Results 

 Scales well (1 million+ features) 

 Robust to ambiguities in the data 
association 

 Advantages compared to the classical 
EKF approach (especially with non-
linearities) 
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Literature 

FastSLAM 

 Thrun et al.: “Probabilistic Robotics”, 
Chapter 13.1-13.3 + 13.8 (see errata!) 

 Montemerlo, Thrun, Kollar, Wegbreit: 
FastSLAM: A Factored Solution to the 
Simultaneous Localization and Mapping 
Problem, 2002 

 Montemerlo and Thrun: Simultaneous 
Localization and Mapping with Unknown 
Data Association Using FastSLAM, 2003 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 

Cyrill Stachniss, 2014 
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