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Motivation 

 So far, we addressed landmark-based 
SLAM (KF-based SLAM, FastSLAM) 

 We learned how to build grid maps 
assuming “known poses” 

 

 

Today: SLAM for building grid maps 
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Mapping With Raw Odometry 

Courtesy: Dirk Hähnel 
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Observation 

 Assuming known poses fails! 

 

 

Questions 

 Can we solve the SLAM problem if no 
pre-defined landmarks are available? 

 Can we use the ideas of FastSLAM to 
build grid maps? 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization for SLAM 

 Factorization of the SLAM posterior 

 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

path posterior 

(particle filter) 
map posterior 

(given the path) 
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Grid-Based SLAM 

 As with landmarks, the map depends 
on the poses of the robot during data 
acquisition 

 If the poses are known, grid-based 
mapping is easy (“mapping with 
known poses”) 
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A Graphical Model for Grid-
Based SLAM 
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters 

 Each particle represents a possible 
trajectory of the robot 

 Each particle maintains its own map  

 Each particle updates it upon 
“mapping with known poses” 
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Particle Filter Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 
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Performance of Grid-Based 
FastSLAM 1.0 
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Problem 

 Too many samples are needed to 
sufficiently model the motion noise 

 Increasing the number of samples is 
difficult as each map is quite large 

 

 Idea: Improve the pose estimate 
before applying the particle filter 
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Pose Correction Using Scan-
Matching 

Maximize the likelihood of the current 
pose and map relative to the previous 
pose and map 

robot motion current measurement 

map constructed so far 
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Motion Model for Scan Matching 

Raw Odometry 

Scan Matching 

Courtesy: Dirk Hähnel 
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Mapping using Scan Matching 

Courtesy: Dirk Hähnel 
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Grid-Based FastSLAM with 
Improved Odometry 

 Scan-matching provides a locally 
consistent pose correction 

 Pre-correct short odometry sequences 
using scan-matching and use them as 
input to FastSLAM 

 Fewer particles are needed, since the 
error in the input in smaller 

 

 
[Hähnel et al., 2003] 
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Graphical Model for Mapping 
with Improved Odometry 
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Grid-Based FastSLAM with 
Scan-Matching 

Courtesy:  
Dirk Hähnel 
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Loop Closure 

Grid-Based FastSLAM with 
Scan-Matching 

Courtesy:  
Dirk Hähnel 
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Grid-Based FastSLAM with 
Scan-Matching 

Courtesy:  
Dirk Hähnel 
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Summary so far … 

 Approach to SLAM that combines scan 
matching and FastSLAM 

 Scan matching to generate virtual 
‘high quality’ motion commands 

 

 Can be seen as an ad-hoc solution to 
an improved proposal distribution 
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What’s Next? 

 Compute an improved proposal that 
considers the most recent observation 

 

 

Goals: 

 More precise sampling 

 More accurate maps 

 Less particles needed 
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For lasers                       

is typically peaked and  
dominates the product 

[Arulampalam et al., 01] 

The Optimal Proposal 
Distribution 
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Proposal Distribution 
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Proposal Distribution 
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Proposal Distribution 
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Proposal Distribution 

globally limits  
the area over  
which to integrate 
(odometry) 

locally limits  
the area over  
which to integrate 
(measurement) 
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Proposal Distribution 

global local 



29 

Proposal Distribution 

Gaussian approximation: 

How to sample from this term? 

with 
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Gaussian Proposal Distribution 

Approximate by a Gaussian: 

Gaussian  
approximation 

Draw next 
generation of 
samples 

maximum reported 
by a scan matcher 

Sampled points around  
the maximum 
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Estimating the Parameters of 
the Gaussian for Each Particle 

xj are the points sampled around  

the result of the scan matcher 
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Gaussian Proposal Distribution 
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The Importance Weight 
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The Importance Weight 



35 

The Importance Weight 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 

Sampled points around the  
maximum of the likelihood 
function found by scan-
matching 

Already computed  
for the proposal!  
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Improved Proposal 

 The proposal adapts to the structure 
of the environment 
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Resampling 

 Resampling at each step limits the 
“memory” of our filter 

 Suppose we loose each time 25% of 
the particles, this may lead to: 

 

 

 

 

 Goal: Reduce the resampling actions 
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Selective Resampling 

 Resampling is necessary to achieve 
convergence 

 Resampling is dangerous, since 
important samples might get lost 
(“particle depletion”) 

 Resampling makes only sense if 
particle weights differ significantly 

 

 Key question: When to resample? 
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Number of Effective Particles 

 Empirical measure of how well the 
target distribution is approximated by 
samples drawn from the proposal 

 
 

 nef  describes “the inverse variance of 
the normalized particle weights” 

 For equal weights, the sample 
approximation is close to the target 
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Resampling with 

 If our approximation is close to the 
target, no resampling is needed 

 We only resample when        drops 
below a given threshold (       ) 
 

 

 

 

 Note: weights need to be normalized 
[Doucet, ’98; Arulampalam, ’01] 
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Typical Evolution of 

visiting new 
areas closing the 

first loop 

second loop closure 

visiting 
known areas 
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Intel Lab 

 15 particles 

 four times faster 
than real-time 
P4, 2.8GHz 

 5cm resolution 
during scan 
matching 

 1cm resolution in 
final map 
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Intel Lab 
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Outdoor Campus Map 

 30 particles 

 250x250m2 

 1.75 km 
(odometry) 

 30cm resolution 
in final map 
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MIT Killian Court 

The “infinite-corridor-dataset” at MIT 
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MIT Killian Court 
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MIT Killian Court – Video 
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Real World Application 

 This guy uses a similar technique…  
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Problems of Gaussian Proposals 

 Gaussians are uni-model distributions 

 In case of loop-closures, the likelihood 
function might be multi-modal 
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Gaussian or Non-Gaussian? 

 Statistical test to check whether or not 
sample a generated from a Gaussian 

 Anderson-Darling test (based on the 
cumulative density function) 

 Difference between the Gaussian and 
the optimal proposal via KLD  
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Is a Gaussian an Accurate 
Choice for the Proposal?  



56 

Problems of Gaussian Proposals 

 Multi-modal likelihood function can 
cause filter divergence 
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Efficient Multi-Modal Sampling 

 Approximate the likelihood in a better way! 

 

 

 

 

 
 
 

 Sample from odometry first and the use  
this as the start point for scan matching 

 

odometry 

mode 1 mode 2 

odometry with uncertainty 
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The Two-Step Sampling Works! 

…with nearly zero overhead 
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Proposal Error Evaluation 

Two-Step Sampling 

Gaussian Proposal 

+ 

+ 

+ 

+ 

+ 

+ 
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Effect of Two-Step Sampling 

 Allows for better modeling multi-modal 
likelihood functions (high KLD values 
do not occur) 

 For uni-modal cases, identical results 

 Minimal computational overhead 
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Gaussian Proposal: Yes or No? 

 Gaussian allow for efficient sampling 

 Problematic in multi-model cases 

 Laser-Based SLAM: 3-6% multi-modal 
distribution (for the datasets here) 

 Gaussian proposals can lead to 
divergence 

 Two-step sampling process overcomes 
this problem effectively and efficiently 
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Conclusion 

 The ideas of FastSLAM can also be 
applied in the context of grid maps 

 Improved proposals are essential  

 Similar to scan-matching on a per-
particle base 

 Selective resamples reduces the risk 
of particle depletion 

 Substantial reduction of the required 
number of particles 
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GMapping 

 Efficient open source implementation 
of the presented method (2005-2008) 

 C++ Code available via  
svn co https://svn.openslam.org/data/svn/gmapping 
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Slide Information 

 These slides have been created by Cyrill Stachniss as part of 
the robot mapping course taught in 2012/13 and 2013/14. I 
created this set of slides partially extending existing material 
of Edwin Olson, Pratik Agarwal, and myself. 

 I tried to acknowledge all people that contributed image or 
video material. In case I missed something, please let me 
know. If you adapt this course material, please make sure 
you keep the acknowledgements. 

 Feel free to use and change the slides. If you use them, I 
would appreciate an acknowledgement as well. To satisfy my 
own curiosity, I appreciate a short email notice in case you 
use the material in your course. 

 My video recordings are available through YouTube: 
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list 

 

Cyrill Stachniss, 2014 
     cyrill.stachniss@igg.uni-
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