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Motivation

= So far, we addressed landmark-based
SLAM (KF-based SLAM, FastSLAM)

= We learned how to build grid maps
assuming “known poses”

Today: SLAM for building grid maps



Mapping With Raw Odometry

Courtesy: Dirk Hahnel



Observation

= Assuming known poses fails!

Questions

= Can we solve the SLAM problem if no
pre-defined landmarks are available?

= Can we use the ideas of FastSLAM to
build grid maps?



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observaﬂons & movements
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First introduced for SLAM by Murphy in 1999



Rao-Blackwellization for SLAM
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Grid-Based SLAM

= As with landmarks, the map depends
on the poses of the robot during data
acquisition

= If the poses are known, grid-based
mapping is easy ("“mapping with
known poses”)



A Graphical Model for Grid-
Based SLAM
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters

= Fach particle represents a possible
trajectory of the robot

= Each particle maintains its own map

= Fach particle updates it upon
“mapping with known poses”



Particle Filter Example
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Performance of Grid-Based
FastSLAM 1.0




Problem

= Too many samples are needed to
sufficiently model the motion noise

= Increasing the number of samples is
difficult as each map is quite large

= Idea: Improve the pose estimate
before applying the particle filter
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Pose Correction Using Scan-
Matching

Maximize the likelihood of the current
pose and map relative to the previous
pose and map

Ty = argmax {p(zt | @, me—1) p(Tt | U, 3?2(_1)}

/ /

current measurement robot motion

map constructed so far
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Motion Model for Scan Matching

Raw Odometry
Scan Matching

Courtesy: Dirk Hahnel
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Mapping using Scan Matching

Courtesy: Dirk Hahnel
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Grid-Based FastSLAM with
Improved Odometry

= Scan-matching provides a locally
consistent pose correction

= Pre-correct short odometry sequences
using scan-matching and use them as
iInput to FastSLAM

= Fewer particles are needed, since the
error in the input in smaller

[Hahnel et al., 2003] 16



Graphical Model for Mapping
with Improved Odometry
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Grid-Based FastSLAM with
Scan-Matching

Courtesy:
Dirk Hahnel
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Grid-Based FastSLAM with
Scan-Matching

Courtesy:

Dirk Hahnel 19

Loop Closure




Grid-Based FastSLAM with
Scan-Matching
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Summary so far ...

= Approach to SLAM that combines scan
matching and FastSLAM

= Scan matching to generate virtual
‘high quality” motion commands

= Can be seen as an ad-hoc solution to
an improved proposal distribution
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What' s Next?

= Compute an improved proposal that
considers the most recent observation
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Goals:

= More precise sampling

= More accurate maps

= | ess particles needed
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The Optimal Proposal
Distribution [Arulampalam et al., 01]
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution

with 7(z¢) = p(z | 2, mlY) p(ay | ajl[le

17“75)

How to sample from this term?

Gaussian approximation:

T(2) = N (u, 21)
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Gaussian Proposal Distribution
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Estimating the Parameters of
the Gaussian for Each Particle

NE

r; T(x;)

S | =
T.

1

1AVA

(w5 — ) (2j — )T 7 ()

S | =
™=

1

x; are the points sampled around
the result of the scan matcher
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Gaussian Proposal Distribution
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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Improved Proposal

= The proposal adapts to the structure
of the environment

(a) (b) l | (C) i



Resampling

= Resampling at each step limits the
“memory” of our filter

= Suppose we loose each time 25% of
the particles, this may lead to:

-

= Goal: Reduce the resampling actions
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Selective Resampling

= Resampling is necessary to achieve
convergence

= Resampling is dangerous, since
important samples might get lost
(“particle depletion”)

= Resampling makes only sense if
particle weights differ significantly

= Key question: When to resample?
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Number of Effective Particles

= Empirical measure of how well the
target distribution is approximated by

samples drawn from the proposal
1

Teff = N
D i <w£2]>
= Neff describes “the inverse variance of
the normalized particle weights”

= For equal weights, the sample
approximation is close to the target
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Resampling with n.4

= If our approximation is close to the
target, no resampling is needed

* We only resample when 7./ drops
below a given threshold (N/2)

1

2 i (w?) 2

= Note: weights need to be normalized
[Doucet, "98; Arulampalam, "01]

?
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Typical Evolution of neﬁ
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Intel Lab
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15 particles

four times faster
than real-time
P4, 2.8GHz

5cm resolution
during scan
matching

1cm resolution in
final map
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Intel Lab
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Outdoor Campus Map

= 30 particles
= 250x250m?

= 1.75 km
(odometry)

= 30cm resolution
in final map
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MIT Killian Court

» The “infinite-corridor-dataset” at MIT
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MIT Killian Court
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MIT Killian Court - Video
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Real World Application

= This guy uses a similar technique...




Problems of Gaussian Proposals

= Gaussians are uni-model distributions

= In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02 r

0.01
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Gaussian or Non-Gaussian?

= Statistical test to check whether or not
sample a generated from a Gaussian

= Anderson-Darling test (based on the
cumulative density function)

» Difference between the Gaussian and
the optimal proposal via KLD
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Is a Gaussian an Accurate

Choice for the Proposal?

Dataset Gauss | Non- Multi-
Gauss; | modal
1 mode N\
Intel Research Lab | 89.2% | 7.2% [/3.6%\
FHW Museum 84.5% | 10.4% [ 5.1%
Belgioioso 84.0% | 10.4% (| 5.6%
MIT CSAIL 78.1% | 15.9% 6.0%
MIT Killian Court | 75.1% | 19.1% \ 5.8%
Freiburg Bldg. 79 || 74.0% | 19.4% \ 6.6% /
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Problems of Gaussian Proposals

= Multi-modal likelihood function can
cause filter divergence
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Efficient Multi-Modal Sampling

= Approximate the likelihood in a better way!

odometry odometry with uncertainty

= Sample from odometry first and the use
this as the start point for scan matching
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The Two-Step Sampling Works!

likelihood
0.02 ¢

0.01 +
0+

18.5
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Proposal Error Evaluation
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Effect of Two-Step Sampling

= Allows for better modeling multi-modal
likelihood functions (high KLD values
do not occur)

= For uni-modal cases, identical results
= Minimal computational overhead
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Gaussian Proposal: Yes or No?

= Gaussian allow for efficient sampling
= Problematic in multi-model cases

= | aser-Based SLAM: 3-6% multi-modal
distribution (for the datasets here)

= Gaussian proposals can lead to
divergence

= Two-step sampling process overcomes
this problem effectively and efficiently
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Conclusion

* The ideas of FastSLAM can also be
applied in the context of grid maps

= Improved proposals are essential

= Similar to scan-matching on a per-
particle base

= Selective resamples reduces the risk
of particle depletion

= Substantial reduction of the required
number of particles
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GMapping

= Efficient open source implementation
of the presented method (2005-2008)

= C++ Code available via
svn co https://svn.openslam.org/data/svn/gmapping
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Slide Information

= These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

= ] tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me
know. If you adapt this course material, please make sure
you keep the acknowledgements.

= Feel free to use and change the slides. If you use them, I
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

= My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyriII.stachniss@igg.uni—65
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