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Three Main SLAM Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 

least squares  
approach to SLAM 
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Least Squares in General 

 Approach for computing a solution for 
an overdetermined system 

 “More equations than unknowns” 

 Minimizes the sum of the squared 
errors in the equations 

 Standard approach to a large set of 
problems 

 

Today: Application to SLAM 
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Robot pose Measurement 

Graph-Based SLAM 

 Odometry measurements connect the 
poses of the robot while it is moving 

 Measurements are uncertain 
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Graph-Based SLAM 

 Observing previously seen areas 
generates measurements between 
non-successive poses 

 

 

 

Robot pose Measurement 
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Idea of Graph-Based SLAM 

 Use a graph to represent the problem 

 Every node in the graph corresponds 
to a pose of the robot during mapping 

 Every edge between two nodes 
corresponds to a spatial measurement 
between them 

 Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the measurement error 
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Graph-Based SLAM in a Nutshell 

 Every node in the 
graph corresponds 
to a robot position 
and a laser 
measurement 

 An edge between 
two nodes 
represents a spatial 
measurement 
between the nodes 

KUKA Halle 22, courtesy of P. Pfaff 
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Graph-Based SLAM in a Nutshell 

 Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 

 Then, we can render a 
map based on the 
known poses 
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The Overall SLAM System 

 Interplay of front-end and back-end 

 Map helps data association by 
reducing the search space 

 Topic today: optimization 

Graph 
Construction 

(Front-End) 

Graph 
Optimization 

(Back-End) 

raw 
data 

graph  
(nodes & edges) 

node positions 

today 
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The Graph 

 It consists of n nodes   

 Each     is a 2D or 3D transformation 
(the pose of the robot at time ti) 

 A measurement/edge exists between 
the nodes     and     if… 
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Create an Edge If… (1) 

 …the robot moves from     to 

 Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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Create an Edge If… (2) 

 …the robot observes the same part of 
the environment from     and from 

 Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

 Transformations can be expressed 
using homogenous coordinates 

 Odometry-Based edge 
 

 

 Observation-Based edge 

How node i sees node j 
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Homogenous Coordinates 

 H.C. are a system of coordinates used 
in projective geometry 

 Projective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

 Formulas involving H.C. are often 
simpler than in the Cartesian world 

 A single matrix can represent affine 
transformations and projective 
transformations 



19 

Homogenous Coordinates 

 H.C. are a system of coordinates used 
in projective geometry 

 Projective geometry is an alternative 
algebraic representation of geometric 
objects and transformations  

 Formulas involving H.C. are often 
simpler than in the Cartesian world 

 A single matrix can represent 
affine transformations and 
projective transformations 
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Homogenous Coordinates 

 N-dim space expressed in N+1 dim 

 4 dim. for modeling the 3D space 

 To HC:  

 Backwards: 

 Vector in HC: 

 Translation: 

 

 Rotation: 
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The Edge Information Matrices 

 Observations are affected by noise 

 Information matrix      for each edge 
to encode its uncertainty 

 The “bigger”     , the more the edge 
“matters” in the optimization  

 

Questions 

 What do the information matrices look like 
in case of scan-matching vs. odometry? 

 What should these matrices look like when 
moving in a long, featureless corridor? 
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Pose Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph 

 Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 

 

 

Question: 

 What is the state vector? 
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Least Squares SLAM 

 This error function looks suitable for 
least squares error minimization 

 

 

Question: 

 What is the state vector? 
 

 

 Specify the error function! 

One block for each  

node of the graph 
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The Error Function 

 Error function for a single measurement 

 

 
 

 

 Error as a function of the whole state vector 

 

 

 Error takes a value of zero if 

 

xj referenced w.r.t. xi measurement 
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Gauss-Newton: The Overall 
Error Minimization Procedure  

 Define the error function 

 Linearize the error function  

 Compute its derivative  

 Set the derivative to zero 

 Solve the linear system 

 Iterate this procedure until 
convergence 
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Linearizing the Error Function 

 We can approximate the error 
functions around an initial guess    
via Taylor expansion 

 

 

 

with 
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Derivative of the Error Function 

 Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

 Does one error term           depend on 
all state variables? 

       No, only on     and   
 Is there any consequence on the 

structure of the Jacobian? 

 Yes, it will be non-zero only in the   
 rows corresponding to     and 
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Jacobians and Sparsity 

 Error           depends only on the two 
parameter blocks     and 

 
 

 The Jacobian will be zero everywhere 
except in the columns of     and  
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Consequences of the Sparsity 

 We need to compute the coefficient 
vector    and matrix    : 

 

 

 
 The sparse structure of      will result 

in a sparse structure of   

 This structure reflects the adjacency 
matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Consequences of the Sparsity 

 An edge contributes to the linear 
system via      and   

 The coefficient vector is: 

 

 

 

 

 It is non-zero only at the indices 
corresponding to     and  
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Consequences of the Sparsity  

 The coefficient matrix of an edge is: 

 

 

 

 

 

 

 

 Non-zero only in the blocks relating i,j  
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Sparsity Summary 

 An edge ij contributes only to the  

 ith and the jth block of   

 to the blocks ii, jj, ij and ji of   

 Resulting system is sparse 

 System can be computed by summing 
up the contribution of each edge 

 Efficient solvers can be used 

 Sparse Cholesky decomposition  

 Conjugate gradients 

 … many others 
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The Linear System 

 Vector of the states increments: 

 

 Coefficient vector: 

 

 System matrix: 
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Building the Linear System 

For each measurement: 

 Compute error 

 Compute the blocks of the Jacobian: 

 
 Update the coefficient vector: 

 

 Update the system matrix: 
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Algorithm 
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Example on the Blackboard 
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Trivial 1D Example 

 Two nodes and one observation 

BUT                    ??? 
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What Went Wrong? 

 The observation specifies a relative 
measurement between the nodes 

 Any poses for the nodes would be fine  
as long a their relative coordinates fit 

 One node needs to be “fixed” 

constraint 
that sets  
dx1=0 
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Fixing the Global Frame 

 We saw that the matrix     has not full 
rank (after adding the measurements) 

 The global frame had not been fixed  

 Fixing the global reference frame is 
strongly related to the prior 

 A Gaussian estimate about      results 
in an additional measurement 

 E.g., first pose in the origin:  
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Real World Examples 
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Fixing a Subset of Variables 

 Assume that the value of certain variables 
during the optimization is known a priori 

 We may want to optimize all others and 
keep these fixed 

 How? 
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Fixing a Subset of Variables 

 Assume that the value of certain variables 
during the optimization is known a priori 

 We may want to optimize all others and 
keep these fixed 

 How? 

 If a variable is not optimized, it should 
“disappears” from the linear system 

 Construct the full system 

 Suppress the rows and the columns 
corresponding to the variables to fix 
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Why Can We Simply Suppress 
the Rows and Columns of the 
Corresponding Variables? 

Courtesy: R. Eustice 
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Uncertainty 

     represents the information matrix 
given the linearization point 

 Inverting     gives the (dense) 
covariance matrix 

 The diagonal blocks of the covariance 
matrix represent the (absolute) 
uncertainties of the corresponding 
variables 
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Relative Uncertainty 

To determine the relative uncertainty 
between     and    : 

 Construct the full matrix  

 Suppress the rows and the columns of   
    (= do not optimize/fix this variable) 

 Compute the block j,j of the inverse 

 This block will contain the covariance 
matrix of     w.r.t.    , which has been 
fixed 
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Example 

robot 
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Conclusions 

 The back-end part of the SLAM 
problem can be effectively solved  
with Gauss-Newton  

 The     matrix is typically sparse 

 This sparsity allows for efficiently 
solving the linear system 

 One of the state-of-the-art solutions  
for computing maps  
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