Robot Mapping

Least Squares Approach to SLAM

Gian Diego Tipaldi, Wolfram Burgard

Three Main SLAM Paradigms

least squares approach to SLAM

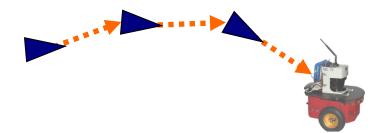
Least Squares in General

- Approach for computing a solution for an overdetermined system
- More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Today: Application to SLAM

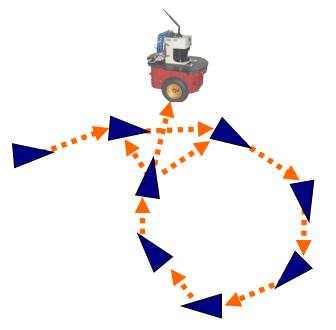
Graph-Based SLAM

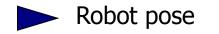
- Odometry measurements connect the poses of the robot while it is moving
- Measurements are uncertain



Graph-Based SLAM

 Observing previously seen areas generates measurements between non-successive poses



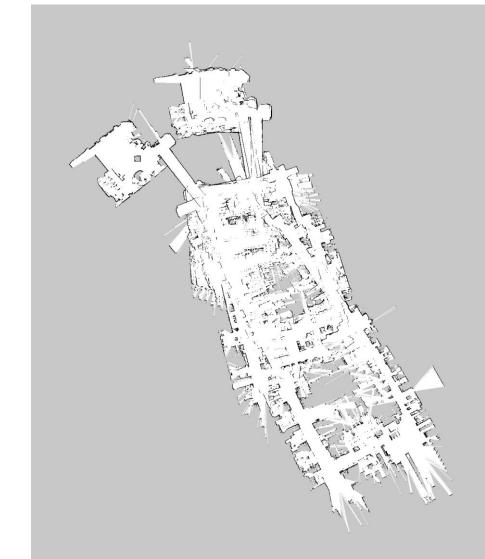




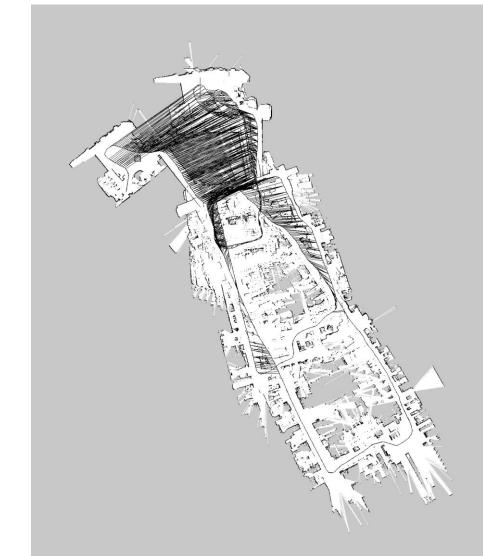
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial measurement between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the measurement error

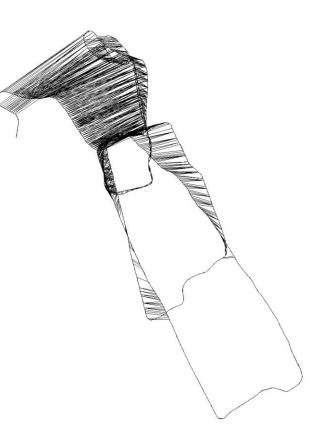
- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial measurement between the nodes



- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial measurement between the nodes

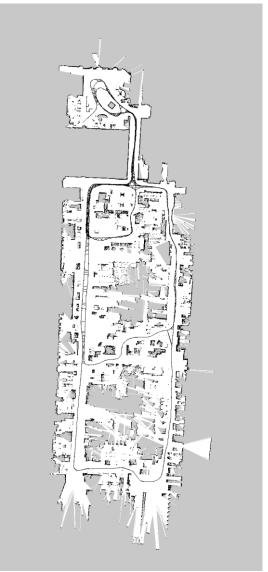


 Once we have the graph, we determine the most likely map by correcting the nodes



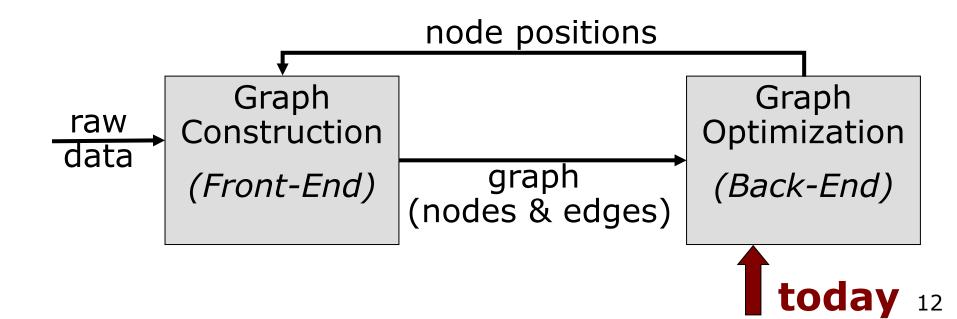
- Once we have the graph, we determine the most likely map by correcting the nodes
 - ... like this

- Once we have the graph, we determine the most likely map by correcting the nodes
 - ... like this
- Then, we can render a map based on the known poses



The Overall SLAM System

- Interplay of front-end and back-end
- Map helps data association by reducing the search space
- Topic today: optimization

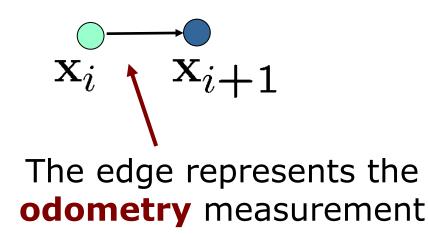


The Graph

- It consists of n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
- Each \mathbf{x}_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A measurement/edge exists between the nodes x_i and x_j if...

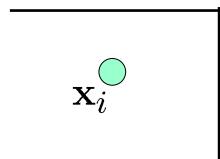
Create an Edge If... (1)

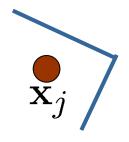
- ...the robot moves from \mathbf{x}_i to \mathbf{x}_{i+1}
- Edge corresponds to odometry



Create an Edge If... (2)

 ...the robot observes the same part of the environment from x_i and from x_j



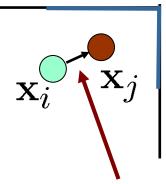


Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_j

Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a virtual measurement about the position of x_j seen from x_i



Edge represents the position of x_j seen from x_i based on the **observation**

Transformations

- Transformations can be expressed using homogenous coordinates
- Odometry-Based edge

 $(\mathbf{X}_i^{-1}\mathbf{X}_{i+1})$

Observation-Based edge

$$(\mathbf{X}_i^{-1}\mathbf{X}_j)$$

How node i sees node

Homogenous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Formulas involving H.C. are often simpler than in the Cartesian world
- A single matrix can represent affine transformations and projective transformations

Homogenous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Formulas involving H.C. are often simpler than in the Cartesian world
- A single matrix can represent affine transformations and projective transformations

Homogenous Coordinates

- N-dim space expressed in N+1 dim
- 4 dim. for modeling the 3D space
- To HC: $(x, y, z)^T \rightarrow (x, y, z, 1)^T$
- Backwards: $(x, y, z, w)^T \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- Vector in HC: $v = (x, y, z, w)^T$
- Translation:

$$T = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation:

$$R = \left(\begin{array}{cc} R^{3D} & 0\\ 0 & 1 \end{array}\right)$$

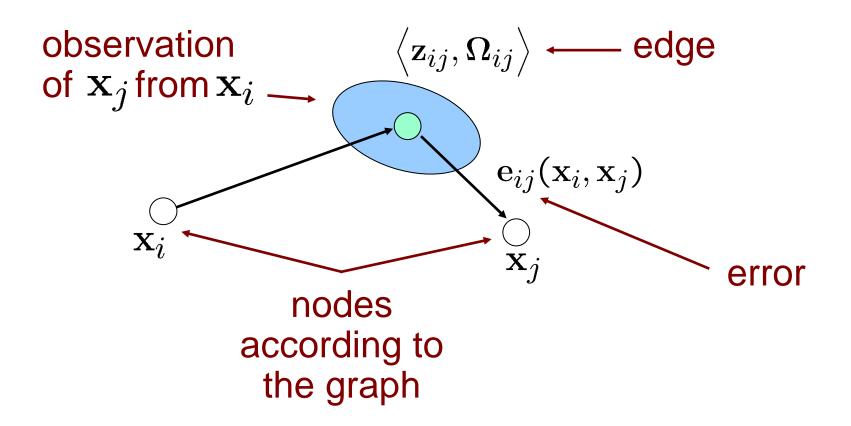
The Edge Information Matrices

- Observations are affected by noise
- Information matrix Ω_{ij} for each edge to encode its uncertainty
- The "bigger" Ω_{ij}, the more the edge "matters" in the optimization

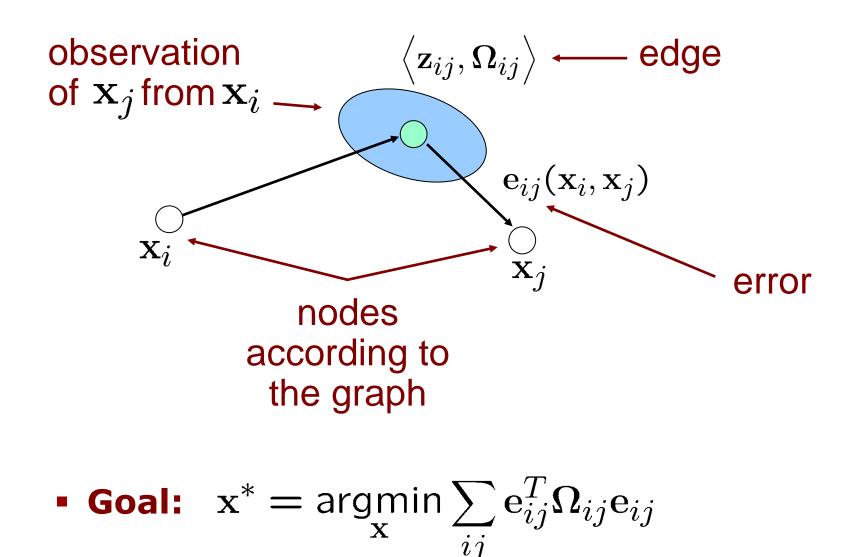
Questions

- What do the information matrices look like in case of scan-matching vs. odometry?
- What should these matrices look like when moving in a long, featureless corridor?

Pose Graph



Pose Graph



Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^{*} = \arg \min_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^{T}(\mathbf{x}_{i}, \mathbf{x}_{j}) \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \arg \min_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \Omega_{k} \mathbf{e}_{k}(\mathbf{x})$$

Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \mathbf{\Omega}_{k} \mathbf{e}_{k}(\mathbf{x})$$

Question:

What is the state vector?

Least Squares SLAM

 This error function looks suitable for least squares error minimization

$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \mathbf{\Omega}_{k} \mathbf{e}_{k}(\mathbf{x})$$

Question:

What is the state vector?

 $\mathbf{x}^T = \begin{pmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T & \cdots & \mathbf{x}_n^T \end{pmatrix} \text{ One block for each node of the graph}$

Specify the error function!

The Error Function

Error function for a single measurement

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

$$\uparrow$$

$$\mathsf{measurement}$$

$$\mathbf{x}_j \text{ referenced w.r.t. } \mathbf{x}_j$$

Error as a function of the whole state vector

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

Error takes a value of zero if

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1}\mathbf{X}_j)$$

Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_{ij}(\mathbf{x}) + \mathbf{J}_{ij}\Delta \mathbf{x}$$

with $\mathbf{J}_{ij} = rac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}}$

Does one error term e_{ij}(x) depend on all state variables?

- Does one error term e_{ij}(x) depend on all state variables?
 - \blacktriangleright No, only on \mathbf{x}_i and \mathbf{x}_j

- Does one error term e_{ij}(x) depend on all state variables?
 - \blacktriangleright No, only on \mathbf{x}_i and \mathbf{x}_j
- Is there any consequence on the structure of the Jacobian?

- Does one error term e_{ij}(x) depend on all state variables?
 - \blacktriangleright No, only on \mathbf{x}_i and \mathbf{x}_j
- Is there any consequence on the structure of the Jacobian?
 - \Rightarrow Yes, it will be non-zero only in the rows corresponding to x_i and x_j

$$\frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}} = \left(\begin{array}{c} \mathbf{0} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \cdots \mathbf{0} \end{array} \right)$$
$$\mathbf{J}_{ij} = \left(\begin{array}{c} \mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \end{array} \right)$$

Jacobians and Sparsity

• Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

The Jacobian will be zero everywhere except in the columns of x_i and x_j

$$\mathbf{J}_{ij} = \left(\mathbf{0} \cdots \mathbf{0} \left| \begin{array}{c} \frac{\partial \mathbf{e}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \\ \frac{\partial \mathbf{x}_i}{\mathbf{A}_{ij}} \end{array} \mathbf{0} \cdots \mathbf{0} \left| \begin{array}{c} \frac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \\ \frac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \end{array} \mathbf{0} \cdots \mathbf{0} \right| \right) \right)$$

Consequences of the Sparsity

We need to compute the coefficient vector b and matrix H:

$$\mathbf{b}^{T} = \sum_{ij} \mathbf{b}_{ij}^{T} = \sum_{ij} \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij}$$
$$\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij}$$

- The sparse structure of J_{ij} will result in a sparse structure of H
- This structure reflects the adjacency matrix of the graph

Illustration of the Structure

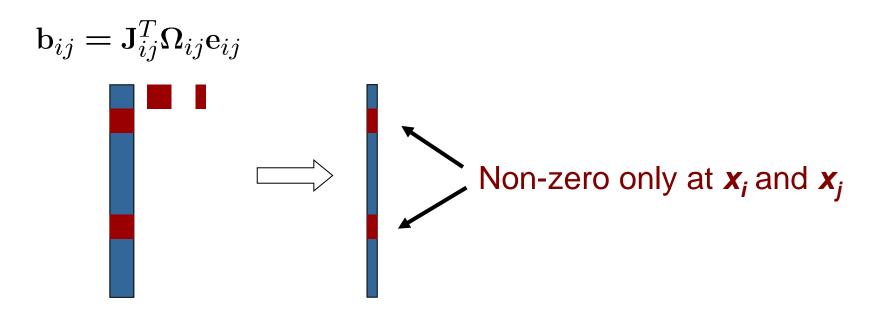
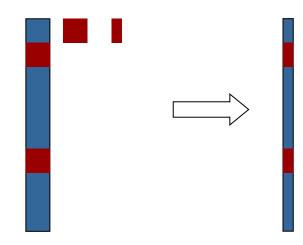


Illustration of the Structure

$$\mathbf{b}_{ij} = \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

 $\mathbf{H}_{ij} = \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$



Non-zero only at x_i and x_j

Non-zero on the main diagonal at **x**_i and **x**_j

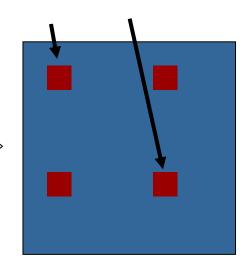
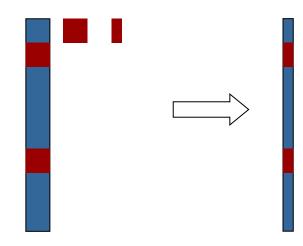


Illustration of the Structure

$$\mathbf{b}_{ij} = \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$



Non-zero only at x_i and x_j

Non-zero on the main diagonal at **x**_i and **x**_j

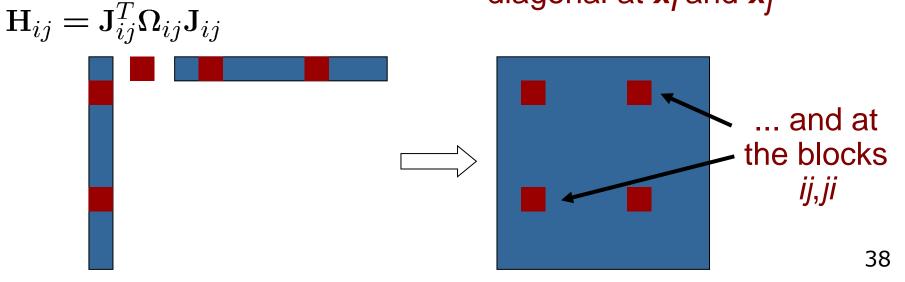
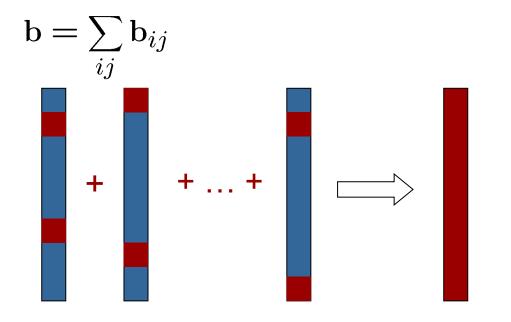
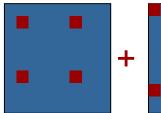
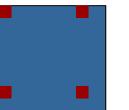


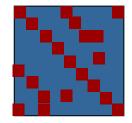
Illustration of the Structure



 $\mathbf{H} = \sum_{ij} \mathbf{H}_{ij}$







Consequences of the Sparsity

- An edge contributes to the linear system via b_{ij} and H_{ij}
- The coefficient vector is:

$$\mathbf{b}_{ij}^{T} = \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij}$$

= $\mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$
= $\left(\mathbf{0} \cdots \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} \cdots \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \cdots \mathbf{0} \right)$

 It is non-zero only at the indices corresponding to x_i and x_j

Consequences of the Sparsity

The coefficient matrix of an edge is:

$$\begin{split} \mathbf{H}_{ij} &= \mathbf{J}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij} \\ &= \begin{pmatrix} \vdots \\ \mathbf{A}_{ij}^T \\ \vdots \\ \mathbf{B}_{ij}^T \\ \vdots \end{pmatrix} \boldsymbol{\Omega}_{ij} \begin{pmatrix} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \\ &\mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \end{pmatrix} \end{split}$$

Non-zero only in the blocks relating i,j

Υ.

Sparsity Summary

- An edge ij contributes only to the
 - i^{th} and the j^{th} block of b_{ij}
 - to the blocks ii, jj, ij and ji of \mathbf{H}_{ij}
- Resulting system is sparse
- System can be computed by summing up the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition
 - Conjugate gradients
 - ... many others

The Linear System

Vector of the states increments:

$$\Delta \mathbf{x}^T = \left(\Delta \mathbf{x}_1^T \ \Delta \mathbf{x}_2^T \ \cdots \ \Delta \mathbf{x}_n^T \right)$$

Coefficient vector:

$$\mathbf{b}^T = \begin{pmatrix} \bar{\mathbf{b}}_1^T & \bar{\mathbf{b}}_2^T & \cdots & \bar{\mathbf{b}}_n^T \end{pmatrix}$$

• System matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

Building the Linear System

For each measurement:

- Compute error $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$
- Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i} \qquad \mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$$

Update the coefficient vector:

$$ar{\mathbf{b}}_i^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad ar{\mathbf{b}}_j^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

• Update the system matrix:

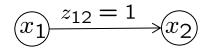
$$\bar{\mathbf{H}}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$
$$\bar{\mathbf{H}}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Algorithm

- 1: optimize(x):
- 2: while (!converged)3: $(\mathbf{H}, \mathbf{b}) = \text{buildLinearSystem}(\mathbf{x})$ 4: $\Delta \mathbf{x} = \text{solveSparse}(\mathbf{H}\Delta \mathbf{x} = -\mathbf{b})$ 5: $\mathbf{x} = \mathbf{x} + \Delta \mathbf{x}$
- 6: end
- $7: return \mathbf{x}$

Example on the Blackboard

Trivial 1D Example



Two nodes and one observation

$$\mathbf{x} = (x_1 x_2)^T = (0 0)$$

 $z_{12} = 1$ $\Omega = 2$

$$e_{12} = z_{12} - (x_2 - x_1) = 1 - (0 - 0) = 1$$

$$J_{12} = (1 - 1)$$

- $\mathbf{b}_{12}^T = \mathbf{e}_{12}^T \Omega_{12} \mathbf{J}_{12} = (2 2)$
- $\mathbf{H}_{12} = \mathbf{J}_{12}^T \mathbf{\Omega} \mathbf{J}_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$
 - $\Delta x = -H_{12}^{-1}b_{12}$

BUT det(H) = 0???

What Went Wrong?

- The observation specifies a relative **measurement** between the nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be "fixed"

$$\mathbf{H} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} + \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{that sets}} \begin{array}{c} \text{constraint} \\ \text{that sets} \\ \mathbf{dx_1} = \mathbf{0} \\ \mathbf{\Delta x} = (\mathbf{0} \mathbf{1})^T \end{array}$$

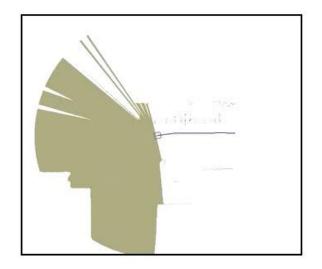
sets

Fixing the Global Frame

- We saw that the matrix H has not full rank (after adding the measurements)
- The global frame had not been fixed
- Fixing the global reference frame is strongly related to the prior $p(\mathbf{x}_0)$
- A Gaussian estimate about x₀ results in an additional measurement
- E.g., first pose in the origin:

$$\mathbf{e}(\mathbf{x}_0) = \mathsf{t2v}(\mathbf{X}_0)$$

Real World Examples



Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Why Can We Simply Suppress the Rows and Columns of the Corresponding Variables?

 $p(\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathcal{N}\left(\left| \begin{array}{c} \boldsymbol{\mu}_{\alpha} \\ \boldsymbol{\mu}_{\beta} \end{array} \right|, \left| \begin{array}{c} \boldsymbol{\Sigma}_{\alpha\alpha} & \boldsymbol{\Sigma}_{\alpha\beta} \\ \boldsymbol{\Sigma}_{\beta\alpha} & \boldsymbol{\Sigma}_{\beta\beta} \end{array} \right| \right) = \mathcal{N}^{-1}\left(\left| \begin{array}{c} \boldsymbol{\eta}_{\alpha} \\ \boldsymbol{\eta}_{\beta} \end{array} \right|, \left| \begin{array}{c} \boldsymbol{\Lambda}_{\alpha\alpha} & \boldsymbol{\Lambda}_{\alpha\beta} \\ \boldsymbol{\Lambda}_{\beta\alpha} & \boldsymbol{\Lambda}_{\beta\beta} \end{array} \right| \right)$ MARGINALIZATION CONDITIONING $p(\boldsymbol{\alpha}) = \int p(\boldsymbol{\alpha}, \boldsymbol{\beta}) d\boldsymbol{\beta}$ $p(\boldsymbol{\alpha} \mid \boldsymbol{\beta}) = p(\boldsymbol{\alpha}, \boldsymbol{\beta})/p(\boldsymbol{\beta})$ $\boldsymbol{\mu}' = \boldsymbol{\mu}_{\alpha} + \Sigma_{\alpha\beta}\Sigma_{\beta\beta}^{-1}(\boldsymbol{\beta} - \boldsymbol{\mu}_{\beta})$ $oldsymbol{\mu}=oldsymbol{\mu}_{lpha}$ COV. FORM $\Sigma' = \Sigma_{\alpha\alpha} - \Sigma_{\alpha\beta} \Sigma_{\beta\beta}^{-1} \Sigma_{\beta\alpha}$ $\Sigma = \Sigma_{\alpha\alpha}$ INFO. $\boldsymbol{\eta} = \boldsymbol{\eta}_{\alpha} - \Lambda_{\alpha\beta}\Lambda_{\beta\beta}^{-1}\boldsymbol{\eta}_{\beta}$ $oldsymbol{\eta}^\prime = oldsymbol{\eta}_lpha - \Lambda_{lphaeta}oldsymbol{eta}$ $\Lambda = \Lambda_{\alpha\alpha} - \Lambda_{\alpha\beta}\Lambda_{\alpha}$ FORM $\Lambda' = \Lambda_{\alpha\alpha}$

Uncertainty

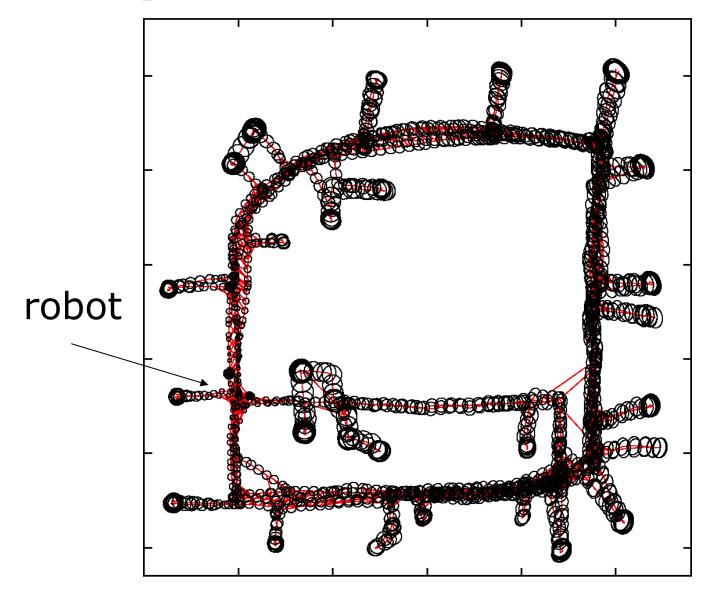
- H represents the information matrix given the linearization point
- Inverting H gives the (dense) covariance matrix
- The diagonal blocks of the covariance matrix represent the (absolute) uncertainties of the corresponding variables

Relative Uncertainty

To determine the relative uncertainty between x_i and x_j :

- Construct the full matrix H
- Suppress the rows and the columns of x_i (= do not optimize/fix this variable)
- Compute the block j,j of the inverse
- This block will contain the covariance matrix of x_j w.r.t. x_i, which has been fixed

Example



Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton
- The H matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- One of the state-of-the-art solutions for computing maps

Literature

Least Squares SLAM

 Grisetti, Kümmerle, Stachniss, Burgard: "A Tutorial on Graph-based SLAM", 2010