Robot Mapping

Robust Least Squares for
SLAM
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Least Squares in General

= Minimizes the sum of the squared
errors

= ML estimation in the Gaussian case

Problems:
= Sensitive to outliers
= Only Gaussians (single modes)



Data Association Is Ambiguous
And Not Always Perfect

» Places that look identical
= Similar rooms in the same building
» Cluttered scenes

= GPS multi pass (signhal reflections)
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Such Situations Occur In Reality
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Committing To The Wrong Mode
Can Lead to Mapping Failures
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Mathematical Model

= We can express a multi-modal belief
by a sum of Gaussians

1
p(z | X) = neXp(__eTQmew)

$

1 7
p(z | x) = Zwknk GXD(——ekawkewk)
k
Sum of Gaussians with k modes



Problem

= During error minimization, we consider
the negative log likelihood

1
— log p(Z ‘ X) = Eegﬂwew — logn

$

1
—logp(z | x) = — 109 » wgny exp(—Eeg;'k ik Ciji)
k

The log cannot be moved inside the sum!
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Max-Mixture Approximation

= [nstead of computing the sum of
Gaussians at X, compute the
maximum of the Gaussians

L 7
p(Z ‘ X) — Zwknk eXp(__ezjkﬂZ]keijk)
k
~ ) Qe
~ mkaxwknkexp( ~Ciji i7.€ij;.)
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Log Likelihood Of The Max-
Mixture Formulation

= The log can be moved inside the max

operator

1
p(z|x) ~ mkax WM exp(—Eeg;kakewk)

4

1
logp(z | x) ~ mkax —QGg;szjkezjk + log(wyng)

1
or: —logp(z|x) ~ mk 5 ;-’;kﬂwkewk log (wng)
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Integration

= With the max-mixture formulation, the
log likelihood again results in local
quadratic forms

= Easy to integrate in the optimizer:
1. Evaluate all k components

2. Select the component with the
maximum log likelihood

3. Perform the optimization as before
using only the max components
(as a single Gaussian)
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Performance (Gauss vs. MM)
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Runtime

Run time anaIyS|s for Intel Dataset
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Max-Mixture and Outliers

= MM formulation is useful for multi-
modal measurements
(D.A. ambiguities)

= MM is also a handy tool for outliers
(D.A. failures)

= Here, one mode represents the edge
and a second model uses a flat
Gaussian for the outlier hypothesis
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Max-Mixture and Outliers

Bi-modal false loop closure Multi-modal with null-hypothesis Bi-modal odometry slippage
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Performance (1 outlier

Gauss-Newton MM Gauss-Newton
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Performance (10 outliers)

We
\: 1. P

Gauss-Newton MM Gauss-Newton

20



Performance (100 outliers)
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Standard Gaussian Least
Squares
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Dynamic Covariance Scaling
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Scaling Parameter
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Dynamlc Covariance Scallng
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Dynamlc Covariance Scallng
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Dynamic Covariance Scaling
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Optimizing With Outliers

= Assuming a Gaussian error in the
measurement is not always realistic

= Large errors are problematic

The
Normal
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Robust M-Estimators

= Assume non-normally-distributed
noise

= Intuitively: PDF with “heavy tails”
= p(e) function used to define the PDF
p(e) = exp(—p(e))
= Minimizing the neq. log likelihood
x* = argmin_p(e;(x))
1
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Different Rho Functions

= Gaussian: p(e) = ¢°

= Absolute values (L1 norm): p(e) = e
* Huber M-estimator

(2
if le|] < c

&
2
| c(Je] —5) otherwise

ple) = <

= Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, ...)
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Huber

= Mixture of a quadratic and a linear
function
r 62 ]
5 if le] < c
e) —= (K 2
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Different Rho Functions
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MM Cost Function For Outliers

* Max Mixture
* Corrupted Gaussian
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Robust Estimation

= Choice of the rho function depends on
the problem at hand

= Huber function is often used

= MM for outlier handling is similar to a
corrupted Gaussian

= MM additionally supports multi-model
measurements

= Dynamic Covariance Scaling is a
robust M-estimator
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Conclusions

= Sum of Gaussians cannot be used
easily in the optimization framework

= Max-Mixture formulation approximates
the sum by the max operator

= This allows for handling data
association ambiguities and failures

= Minimal performance overhead
= Minimal code changes for integration
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Edwin Olson, Pratik Agarwal, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
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