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Robot Mapping  

TORO ï Gradient Descent 
for SLAM  
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Stochastic Gradient Descent  

ÁMinimize the error individually for each 
measurement ( decomposition of the 
problem into sub -problems)  

ÁSolve one step of each sub -problem  

ÁSolutions might be contradictory  

ÁThe magnitude of the correction decreases 
with each iteration  

ÁLearning rate to achieve convergence  

[First used in the SLAM community by Olson et al., 06]  

selected measurement  
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distribute the error over  
a set of involved nodes  
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Preconditioned SGD  

ÁMinimize the error individually for each 
measurement  

ÁSolve one step of each sub -problem  

ÁA solution is found when an equilibrium is 
reached  

ÁUpdate rule for a single measurement:  

 
Information matrix Previous solution 

residual Jacobian 

Hessian 

Learning rate Current solution 
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Node Parameterization  

ÁHow to represent the nodes in the graph?  

ÁImpacts which parts need to be updated for 
a single measurement update  

ÁTransform the problem into a different 
space so that:  

Áthe structure of the problem is exploited  

Áthe calculations become fast and easy  

Mapping function 

poses parameters 

transformed problem 

parameters 
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Parameterization of Olson  

ÁIncremental parameterization:  

 

 

 

ÁDirectly related to the trajectory  

ÁProblem:  to optimize a measurement 
between the nodes i and k, one needs 
to updates the nodes i, é, k ignoring 
the topology of the environment  

 

poses parameters 
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Alternative Parameterization  

ÁExploit the topology of the space to 
compute the parameterization  

ÁIdea: Loops should be one sub -
problem  

ÁSuch a parameterization can be 
extracted from the graph topology 
itself  
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Tree Parameterization  

ÁHow should such a problem  
decomposition look like?  
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Tree Parameterization  

ÁUse a spanning tree!  
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Tree Parameterization  

ÁConstruct a spanning tree from the graph  

ÁMapping between poses and parameters  

 
ÁError of a measurement in the new 

parameterization  

Only variables along the path  
of a measurement are involved in  
the update  
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Stochastic Gradient Descent 
With The Tree Parameterization  

ÁThe tree parameterization leads to several 
smaller problems which are either:  

Ámeasurements on the tree ( open loop )  

Ámeasurements not in the tree ( a loop closure )  

ÁEach SGD equation independently solves 
one sub -problem at a time  

ÁThe solutions are integrated via the learning 
rate  
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Computation of the Update Step  

Á3D rotations are non - linear  

ÁUpdate according to the SGD equation 
may lead to poor convergence  

ÁSGD update:  

 

 

ÁIdea: distribute a fraction of the 
residual along the parameters so that 
the error of that measurement is 
reduced  

 



14  

Computation of the Update Step  

Alternative update in the spirit  of the 
SGD: Smoothly deform the path along 
the measurements so that the error is 
reduced  

Distribute the 
rotational error 

Distribute the 
translational error 
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Rotational Error  

ÁIn 3D, the rotational error cannot be simply 
added to the parameters because the 
rotations are not commutative  

ÁFind a set of incremental  rotations so that 
the following equality holds:  

 

rotations along the path fraction of the 
rotational 
residual in the 
local frame 

corrected terms for the rotations 
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Rotational Residual  

ÁLet the first node be the reference 
frame  

ÁWe want a correcting rotation around 
a single axis  

ÁLet      be the orientation of the i- th  
node in the global reference frame  
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Rotational Residual  

ÁWritten as a rotation in global frame  

 

Áwith a decomposition of the rotational 
residual into a chain of incremental 
rotations obtained by spherical linear 
interpolation ( slerp )  

 

 

ÁSlerp  designed for 3d animations: 
constant speed motion along a circle  
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What is the SLERP?  

ÁSpherical LinEar  inteRPolation  

ÁIntroduced by Ken Shoemake  for 
interpolations in 3D animations  

ÁConstant speed motion along a circle 
arc with unit radius  

ÁProperties:  
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Rotational Residual  

ÁGiven the     , we obtain  

 

Áas well as  

 

Áand can then solve:  
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Rotational Residual  

ÁResulting update rule  

 
ÁIt can be shown that the change in 

each rotational residual is bounded by  

 
ÁThis bounds a potentially introduced 

error at node k when correcting a 
chain of poses including k  
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How to Determine u k? 

ÁThe uk describe the distribution of the error  

 
ÁConsider the uncertainty of the 

measurements  

 

 

 

 

 

ÁThis assumes roughly spherical covariances!  

all measurements connecting m  
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Distributing the Translational 
Error  

ÁThat is trivial  

ÁJust scale the x, y, z movements  
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Summary of the Algorithm  

ÁDecompose the problem according to 
the tree parameterization  

ÁLoop:  

ÁSelect a measurement  

ÁRandomly or sample inverse proportional to  
the number of nodes involved in the update  

ÁCompute the nodes involved in update  

ÁNodes according to the parameterization tree  

ÁReduce the error for this sub -problem  

ÁReduce the rotational error ( slerp )  

ÁReduce the translational error  



24  

Complexity  

ÁIn each iteration, the approach 
handles all measurements  

ÁEach measurement optimization 
requires to update a set of nodes (on 
average: the average path length 
according to the tree)  

#  measurements  avg. path length  
(parameterization tree)  
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Cost of a Measurement Update  
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Node Reduction  

ÁComplexity grows with the length of 
the trajectory  

ÁCombine measurements between 
nodes if the robot is well - localized  

 

 
ÁSimilar to adding rigid measurements  

ÁThen, complexity depends on the size 
of the environment (not trajectory)  
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Simulated Experiment  

ÁHighly connected 
graph  

ÁPoor initial guess  

Á2200 nodes  

Á8600 
measurements  
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Spheres with Different Noise  
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EPFL campus  

Mapping the EPFL Campus  

Á10km long trajectory with 3D laser scans  
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Mapping the EPFL Campus  
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TORO vs. Olson s Approach  

TORO  

Olson s approach  

1 iteration             10 iterations                50 iterations              100 iterations          300 iterations  
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TORO vs. Olson s Approach  
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Time Comparison  
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Robust to the Initial Guess  

ÁRandom initial guess  

ÁIntel datatset as the basis for 16 floors 
distributed over 4 towers  

initial configuration  intermediate result  final result  
(50 iterations)  


