Robot Mapping

TORO – Gradient Descent for SLAM

Gian Diego Tipaldi, Wolfram Burgard

Stochastic Gradient Descent

- Minimize the error individually for each measurement (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

selected measurement

[First used in the SLAM community by Olson et al., '06]

Stochastic Gradient Descent

- Minimize the error individually for each measurement (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

distribute the error over a set of involved nodes

[First used in the SLAM community by Olson et al., '06]

Stochastic Gradient Descent

- Minimize the error individually for each measurement (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First used in the SLAM community by Olson et al., '06]

Preconditioned SGD

- Minimize the error individually for each measurement
- Solve one step of each sub-problem
- A solution is found when an equilibrium is reached
- Update rule for a single measurement:

Node Parameterization

- How to represent the nodes in the graph?
- Impacts which parts need to be updated for a single measurement update
- Transform the problem into a different space so that:
 - the structure of the problem is exploited
 - the calculations become fast and easy

Parameterization of Olson

Incremental parameterization:

$$\begin{array}{c} x_i = p_i - p_{i-1} \\ \uparrow \\ parameters \\ poses \end{array}$$

- Directly related to the trajectory
- Problem: to optimize a measurement between the nodes i and k, one needs to updates the nodes i, ..., k ignoring the topology of the environment

Alternative Parameterization

- Exploit the topology of the space to compute the parameterization
- Idea: "Loops should be one subproblem"
- Such a parameterization can be extracted from the graph topology itself

Tree Parameterization

 How should such a problem decomposition look like?

Tree Parameterization

• Use a spanning tree!

Tree Parameterization

- Construct a spanning tree from the graph
- Mapping between poses and parameters

$$X_i = P_{\text{parent}(i)}^{-1} P_i$$

 Error of a measurement in the new parameterization

$$E_{ij} = \Delta_{ij}^{-1} \operatorname{UpChain}^{-1} \operatorname{DownChain}$$

Only variables along the path of a measurement are involved in the update

Stochastic Gradient Descent With The Tree Parameterization

- The tree parameterization leads to several smaller problems which are either:
 - measurements on the tree ("open loop")
 - measurements not in the tree ("a loop closure")
- Each SGD equation independently solves one sub-problem at a time
- The solutions are integrated via the learning rate

Computation of the Update Step

- 3D rotations are non-linear
- Update according to the SGD equation may lead to poor convergence
- SGD update:

$$\Delta \mathbf{x} = \lambda \mathbf{H}^{-1} \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{r}_{ij}$$

 Idea: distribute a fraction of the residual along the parameters so that the error of that measurement is reduced

Computation of the Update Step

Alternative update in the "spirit" of the SGD: Smoothly deform the path along the measurements so that the error is reduced

Rotational Error

- In 3D, the rotational error cannot be simply added to the parameters because the rotations are not commutative
- Find a set of incremental rotations so that the following equality holds:

$$R_1 R_2 \cdots R_n B = R'_1 R'_2 \cdots R'_n$$

Rotational Residual

- Let the first node be the reference frame
- We want a correcting rotation around a single axis
- Let A_i be the orientation of the i-th node in the global reference frame

$$A'_n = A_n B$$

Rotational Residual

Written as a rotation in global frame

$$A'_n = A_n B = Q A_n$$

 with a decomposition of the rotational residual into a chain of incremental rotations obtained by spherical linear interpolation (slerp)

$$Q = Q_1 Q_2 \cdots Q_n$$

 $Q_k = \operatorname{slerp}(Q, u_{k-1})^T \operatorname{slerp}(Q, u_k) \qquad u \in [0 \dots \lambda]$

 Slerp designed for 3d animations: constant speed motion along a circle

What is the SLERP?

- Spherical LinEar inteRPolation
- Introduced by Ken Shoemake for interpolations in 3D animations
- Constant speed motion along a circle arc with unit radius
- Properties:

$$\mathcal{R}' := \operatorname{slerp}(\mathcal{R}, u)$$

axisOf(\mathcal{R}') = axisOf(\mathcal{R})
angleOf(\mathcal{R}') = u angleOf(\mathcal{R})

Rotational Residual

- Given the Q_k , we obtain $A'_k = Q_1 \dots Q_k A_k = Q_{1:k} A_k$
- as well as

$$R'_k = A'^T_{k-1}A'_k$$

and can then solve:

$$R'_{1} = Q_{1}R_{1}$$

$$R'_{2} = (Q_{1}R_{1})^{T}Q_{1:2}R_{1:2} = R_{1}^{T}Q_{1}^{T}Q_{1}Q_{2}R_{1}R_{2}$$

$$\vdots$$

$$R'_{k} = [(R_{1:k-1})^{T}Q_{k}R_{1:k-1}]R_{k}$$

Rotational Residual

Resulting update rule

$$R'_k = (R_{1:k-1})^T Q_k R_{1:k}$$

 It can be shown that the change in each rotational residual is bounded by

$$\Delta r'_{k,k-1} \leq |\text{angleOf}(Q_k)|$$

 This bounds a potentially introduced error at node k when correcting a chain of poses including k

How to Determine *u_k*?

The u_k describe the distribution of the error

$$Q_k = \operatorname{slerp}(Q, u_{k-1})^T \operatorname{slerp}(Q, u_k) \qquad u \in [0 \dots \lambda]$$

- Consider the uncertainty of the measurements $u_{k} = \min(1, \lambda | \mathcal{P}_{ij} |) \left[\sum_{m \in \mathcal{P}_{ij} \land m \leq k} d_{m}^{-1} \right] \left[\sum_{m \in \mathcal{P}_{ij}} d_{m}^{-1} \right]^{-1}$ $d_{m} = \sum_{\langle l, m \rangle} \min[\operatorname{eigen}(\Omega_{lm})]$ all measurements connecting m
- This assumes roughly spherical covariances!

Distributing the Translational Error

- That is trivial
- Just scale the x, y, z movements

Summary of the Algorithm

- Decompose the problem according to the tree parameterization
- Loop:
 - Select a measurement
 - Randomly or sample inverse proportional to the number of nodes involved in the update
 - Compute the nodes involved in update
 - Nodes according to the parameterization tree
 - Reduce the error for this sub-problem
 - Reduce the rotational error (slerp)
 - Reduce the translational error

Complexity

- In each iteration, the approach handles all measurements
- Each measurement optimization requires to update a set of nodes (on average: the average path length according to the tree)

 $\mathcal{O}(Ml)$ \uparrow \uparrow # measurements avg. path length (parameterization tree)

Cost of a Measurement Update

Node Reduction

- Complexity grows with the length of the trajectory
- Combine measurements between nodes if the robot is well-localized

$$\Omega_{ij} = \Omega_{ij}^{(1)} + \Omega_{ij}^{(2)}$$

$$z_{ij} = \Omega_{ij}^{-1} \left(\Omega_{ij}^{(1)} z_{ij}^{(1)} + \Omega_{ij}^{(2)} z_{ij}^{(2)} \right)$$

- Similar to adding rigid measurements
- Then, complexity depends on the size of the environment (not trajectory)

Simulated Experiment

- Highly connected graph
- Poor initial guess
- 2200 nodes
- **8600**

measurements

Spheres with Different Noise

Mapping the EPFL Campus

10km long trajectory with 3D laser scans

Mapping the EPFL Campus

TORO vs. Olson's Approach

TORO

TORO vs. Olson's Approach

Time Comparison

Robust to the Initial Guess

- Random initial guess
- Intel datatset as the basis for 16 floors distributed over 4 towers

Drawbacks of TORO

- The slerp-based update rule optimizes rotations and translations separately
- It assume roughly spherical covariance ellipses
- Slow convergence speed close to minimum
- No covariance estimates

Conclusions

- TORO Efficient maximum likelihood estimate for 2D and 3D pose graphs
- Robust to bad initial configurations
- Efficient technique for ML map estimation (or to initialize GN/LM)
- Works in 2D and 3D
- Scales up to millions of measurements
- Available at OpenSLAM.org http://www.openslam.org/toro.html

Literature

SLAM with Stochastic Gradient Descent

- Olson, Leonard, Teller: "Fast Iterative Optimization of Pose Graphs with Poor Initial Estimates"
- Grisetti, Stachniss, Burgard: "Nonlinear Constraint Network Optimization for Efficient Map Learning"

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Giorgio Grisetti, Wolfram Burgard, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de