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Stochastic Gradient Descent

= Minimize the error individually for each
measurement (decomposition of the
problem into sub-problems)

= Solve one step of each sub-problem
= Solutions might be contradictory

= The magnitude of the correction decreases
with each iteration

= Learning rate to achieve convergence

Qselected measurement

[First used in the SLAM community by Olson et al., " 06]
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Preconditioned SGD

= Minimize the error individually for each
measurement

= Solve one step of each sub-problem

= A solution is found when an equilibrium is

reached

= Update rule for a single measurement:
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Node Parameterization

= How to represent the nodes in the graph?

= Impacts which parts need to be updated for
a single measurement update

= Transform the problem into a different

space so that:
= the structure of the problem is exploited
= the calculations become fast and easy

parameters
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Parameterization of Olson

= Incremental parameterization:

Lj = Pi — Pi—1
1 1

parameters | | poses

= Directly related to the trajectory

= Problem: to optimize a measurement
between the nodes i and k, one needs
to updates the nodes i, ..., k ignoring
the topology of the environment



Alternative Parameterization

= Exploit the topology of the space to
compute the parameterization

= [dea: “Loops should be one sub-
problem”

= Such a parameterization can be
extracted from the graph topology
itself



Tree Parameterization

= How should such a problem
decomposition look like?




Tree Parameterization

= Use a spanning tree!
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Tree Parameterization

= Construct a spanning tree from the graph
= Mapping between poses and parameters
X = Pp_arent(z)P

= Error of a measurement in the new
parameterization

Eij = Ai—jl UpChain_1 DownChain

Only variables along the path
of a measurement are involved in
the update
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Stochastic Gradient Descent
With The Tree Parameterization

= The tree parameterization leads to several
smaller problems which are either:
= measurements on the tree (“open loop™”)
= measurements not in the tree (“a loop closure”)

= Fach SGD equation independently solves
one sub-problem at a time

= The solutions are integrated via the learning
rate




Computation of the Update Step

= 3D rotations are non-linear

= Update according to the SGD equation
may lead to poor convergence

= SGD update:
AX = )\H_ng;Qijrij

= Idea: distribute a fraction of the
residual along the parameters so that
the error of that measurement is
reduced
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Computation of the Update Step

Alternative update in the “spirit” of the
SGD: Smoothly deform the path along
the measurements so that the error is
reduced
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Rotational Error

= In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

* Find a set of incremental rotations so that
the following equality holds:

RiRy---RnB = R{R5---R),

N
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L S
rotations along the path | fraction of the

rotational corrected terms for the rotations

residual in the
local frame
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Rotational Residual

» Let the first node be the reference
frame

= We want a correcting rotation around
a single axis

= Let A; be the orientation of the i-th
node in the global reference frame
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Rotational Residual

= Written as a rotation in global frame

= with a decomposition of the rotational
residual into a chain of incremental

rotations obtained by spherical linear
interpolation (slerp)

Q Q1Q2 - Qn
Q. = slerp(Q,ui_1)" slerp(Q, uy) we [0... )]

= Slerp designed for 3d animations:
constant speed motion along a circle
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What is the SLERP?

= Spherical LinEar inteRPolation

= Introduced by Ken Shoemake for
interpolations in 3D animations

= Constant speed motion along a circle
arc with unit radius

= Properties:

R’ = slerp(R,u)
axisOf(R') = axisOf(R)
angleOf(R') = w angleOf(R)
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Rotational Residual

= Given the @, we obtain
Al = Q1. QpAr = Q114
= as well as
Ry = AL 4
= and can then solve:

= @1
= (Q1R1)"Q1:20R1.0 = R{1Q] Q1Q2R1R>

X, X
N~~~
|

R, = [(Ri:p-1)' QLR1.1_1]Rs
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Rotational Residual

= Resulting update rule
R, = (Rl:k—l)TQle:k

= [t can be shown that the change in
each rotational residual is bounded by

Ary 1 < |angleOf(Qy)|

= This bounds a potentially introduced
error at node k when correcting a
chain of poses including k
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How to Determine u,?

= The u, describe the distribution of the error
Qr = slerp(Q,u;_1) slerp(Q,u) uwe[0... )]

= Consider the uncertainty of the
measurements i L1

wy, = min (1, A|P;;]) Sodt | Y

_mEPZ'j/\mSk \7

d,, = Z min |eigen (2, )]

/Sl,m>

all measurements connecting m

= This assumes roughly spherical covariances!
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Distributing the Translational
Error

= That is trivial
= Just scale the X, y, z movements
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Summary of the Algorithm

= Decompose the problem according to
the tree parameterization

= Loop:

= Select a measurement

= Randomly or sample inverse proportional to
the number of nodes involved in the update

= Compute the nodes involved in update
= Nodes according to the parameterization tree

= Reduce the error for this sub-problem
= Reduce the rotational error (slerp)
= Reduce the translational error
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Complexity

= In each iteration, the approach
handles all measurements

= Each measurement optimization
requires to update a set of nodes (on
average: the average path length
according to the tree)

o

# measurements avg. path length
(parameterization tree)
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Cost of a Measurement Update

Operations per constraint
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Node Reduction

= Complexity grows with the length of
the trajectory

= Combine measurements between
nodes if the robot is well-localized

;; = QS)—I-Q,EJQ-)
v = 0—1 (Q(l)z(l)_l_Q(?)Z(?))

17 1] g 1] 19
= Similar to adding rigid measurements

= Then, complexity depends on the size
of the environment (not trajectory)
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Simulated Experiment
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Spheres with Different Noise
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Mapping the EPFL Campus

EPFL campus

= 10km long trajectory with 3D laser scans
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Mapping the EPFL Campus
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TORO vs. Olson’s Approach

Olson’s approach

1 iteration 10 iterations 50 iterations 100 iterations 300 iterations
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TORO vs. Olson’s Approach
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10000

1000

100

10

0.1

0.01

i Olson’s approach ==
[ Tree approach + node reduction ———
i Il Tree approach ———

.EE
BET S
FOE !IZ:II
x
F E! zx*“’”ﬂﬂﬂuxun:nu"“
AN nnnImmmm”

L
*

0 20 40 60 80

iteration

100

clrror per con straint

10000
1000
100

0.01
0.001
le-04

Olson’s apprt;liach (biglnﬂise)
Tree approach (big noise)

Olson’s approach (small noise) -

Tree approach (small noise)

0 2000

4000 6000

iteration

8000

10000

32



Time Comparison

execution time per iteration [s]
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Robust to the Initial Guess

= Random initial guess
» Intel datatset as the basis for 16 floors

distributed over 4 towers
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Drawbacks of TORO

= The slerp-based update rule optimizes
rotations and translations separately

= [t assume roughly spherical
covariance ellipses

= Slow convergence speed close to
minimum
= NO covariance estimates
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Conclusions ﬁ

= TORO - Efficient maximum likelihood
estimate for 2D and 3D pose graphs

= Robust to bad initial configurations

= Efficient technique for ML map
estimation (or to initialize GN/LM)

= Works in 2D and 3D
= Scales up to millions of measurements

= Available at OpenSLAM.org
http://www.openslam.org/toro.html
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SLAM with Stochastic Gradient
Descent

= Olson, Leonard, Teller: “Fast Iterative
Optimization of Pose Graphs with Poor
Initial Estimates”

= Grisetti, Stachniss, Burgard: “"Non-
linear Constraint Network Optimization
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Slide Information

These slides have been created by Cyrill Stachniss as part of
the robot mapping course taught in 2012/13 and 2013/14. 1
created this set of slides partially extending existing material
of Giorgio Grisetti, Wolfram Burgard, and myself.

I tried to acknowledge all people that contributed image or
video material. In case I missed something, please let me

know. If you adapt this course material, please make sure

you keep the acknowledgements.

Feel free to use and change the slides. If you use them, 1
would appreciate an acknowledgement as well. To satisfy my
own curiosity, I appreciate a short email notice in case you
use the material in your course.

My video recordings are available through YouTube:
http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ405QzbIHgI3b1JHIimN_&feature=g-list

Cyrill Stachniss, 2014
cyrill.stachniss@igg.uni-
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