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What is semantic segmentation?

Input image Segmentation mask



Encoder-Decoder Architectures

= Encoders: " Decoders:

= Takes an input image and = Takes a high dimensionality
generates a high feature vector and
dimensionality feature generates semantic masks
vector

= Upsample features

= Aggregate features at aggregated by encoders at

multiple levels multiple levels
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[Simonyan et al. 2014]



Encoder-decoder networks

Convolutional Encoder Convolutional Decoder

Pooling Indices

OUTPUT

_—>

RGB Image

Segmentation

. 7x7Conv + BN + ELU . 2x2 Pooling . Dropout . Upsampling D De-Conv + BN + ELU D Softmax +Accuracy

[Yasrab et al. 2017]

= Upsampling through transposed convolutions

= Refinement stages



Transposed Convolutions

= Transposed convolutions are used to upsample
the features.

= Example with Iter kernel size [3, 3] and stride 2:
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Transposed Convolutions

slim.conv2d_transpose(
inputs ,
filters ,
kernel_size ,
stride,
scope ='layer_name'
)

Inputs: input tensor

filters: amount of output features

kernel_size: size of the kernel in each dimension
stride: upsampling rate

scope: name/id of the layer



Refinement Stages

= Slowly upsampling or stage upsampling adds
‘skip connections’ from encoder layers to the
decoder by fusing feautures which pass through
less downsampling operations.
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Refinement Stages

= Skip connections provide the necessary details
in order to reconstruct accurate shapes for
segmentation boundaries. Fine-grain
segmentation masks are obtained with a multi-

stage upsampling approach with skip

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
predicti -32s)  prediction  predi CN-16s)  prediction predic N-8s)
l/ \\
| .
image pooll pool2 pool3 pool4 poolb | pool4 ‘ pool3 *Z
| .. R It
/ prediction prediction
y y
________ /
/
””” 7
N L N RS

______________



Refinement Stages

Stride 32 Stride 16 Stride 8

No Skip connection one Skip Two skip

[Long et al. 2015]



Refinement block
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Efficiency aspect of FCNs



Networks parameter balancing

Convolutional Encoder Convolutional Decoder
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. 7x7Conv + BN + ELU . 2x2 Pooling . Dropout . Upsampling D De-Conv + BN + ELU D Softmax +Accuracy

[Yasrab et al. 2017]

= Higher resolution layers will hold most of the
computational requirements



Convolution Factorization

Input feature map Output feature map
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Where N is the number of input channels and M the number of
output channels



Spatial and Channel Domain

= Spatial have a neighborhood pattern

= Channel is fully connected

spatial channel
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Group Convolution

= Input features are grouped and convolution is
performed indepedently for each group
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Depthwise Convolution

= Convolutions are computed for each input
channel (M=N=G)
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Metrics for segmentation



Overall pixel accuracy (OP)

= Accuracy measures the proportion of correctly
labelled pixels

= One significant limitation of this measure is its
bias in the presence of very imbalanced classes.
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Class Balancing Problem

= Median Frequency

ac = median_freq/ freq(c)

= Focal Loss

Fr(pe) = —a¢ (1 —pt) ' log (py)



Per class accuracy (PC)

= Per class accuracy measures the proportion of
correctly labelled pixels for each class and then

averages over the classes

= Suitable for datasets with no background class

L
C;;
§E



Intersection over Union (IoU)

= Measures the intersection over the union of the
labelled segments for each class and reports the

average

= JoU takes into account both the false alarms and
the missed values for each class

Area of Overlap

loU =
Area of Union




Now assignment 3!



