
Final projects - CV

- 1. Efficient semantic segmentation
- 2. Modalities for segmentation
- 3. IoU loss and balancing for segmentation
- 4. Augmentation parameter search

1. Efficient semantic segmentation

- Find the best in terms of IoU and the best trade-off between IoU and runtime
 - Inverted residuals
 - Residual blocks
 - ShuffleNet v2
 - Dense Block
- Decoder: explore multiple version of decoders find the best and best trade-off between IoU and runtime with the results from the previous experiments
 - ASPP (DeepLab v2)
 - PSP module (PSPNet)
 - U-Net
 - Deep Decoders
- Basic results on CamVid dataset, extra grade for experiments on Cityscapes

2. Modalities for segmentation

- Use a fixed segmentation network architecture (one of the following):
 - DeepLab v2
 - PSP Net
- Experiment with multiple input modalities
 - o RGB
 - RGB + optical flow
 - RGB + motion boundaries
 - RGB + optical flow + motion boundaries
- Analyze how different modalities affect performance qualitatively & quantitatively.
- Use FlowNet3 to precompute modalities
 - https://github.com/lmb-freiburg/netdef_models
- Results on Cityscapes

3. IoU loss function and class balancing

- Implement a loss function based on the Intersection over Union (IoU) metric and its impact versus the standard accuracy loss
- Class balancing problem: test and provide insights of which approach to weight balancing is more suitable for segmentation
 - Median frequency
 - Focal loss
 - Other suitable approach
- Cityscapes dataset as benchmark dataset

4. Augmentation parameter search

- Use a fixed segmentation network architecture (one of the following):
 - DeepLab v2
 - PSP Net
- Some ideas for augmentation:
 - Spatial:
 - Random crop (crop size)
 - Horizontal flip (flip probability)
 - Image rescaling (rescale factors)
 - Cutout (cutout length)
 - ...
 - Intensity:
 - Noise (salt pepper, gaussian...)
 - Color augmentation
 - **...**
- Present a nice ablation study
- Bonus points:
 - Come up with your own ideas of augmentation
 - Use Hyperband to tune the augmentation parameters
- Basic results on CamVid dataset, extra grade for experiments on Cityscapes