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Hyperparameter Optimization

Finding the right hyperparameters for a machine learning algorithm A can be
defined as an optimization problem:

x? ∈ arg min
x∈X

f(x)

I x denotes all hyperparameters that should be optimized

I X is the configuration space which specifies the domain for each
hyperparameter

I f measures the error of training A with hyperparameters x, e. g. validation
error

I we assume f to be noisy, i. e. we only observe y(x) = f(x) + ε where
ε ∼ N (0, σnoise)
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Recap Grid Search
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Recap Random Search
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Model-Based optimization
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Model-Based optimization
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Model-Based optimization
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Gaussian Process

We can model the objective function f(x) with a Gaussian process
[Rasmussen and Williams, 2006]:

f(x) ∼ GP(µ(x), k(x,x′))

A Gaussian process is fully defined by:

I a mean function µ(x) which is usually set to µ(x) = 0

I a kernel function k(x,x′) which measures the similarity between two
points x and x′. For example the RBF kernel:

k(x, x′) = θ0 · exp

(
−‖x− x

′‖2

θ1

)
where θ0 and θ1 are hyperparameters.

Given new observed data D we can compute the posterior mean µ(x|θ,D) and
variance σ2(x|θ,D) analytically.
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Random Forest

Use mean and variance of the individual tree predictions to approximate p(f |D)
(see [Hutter et al., 2011])
Pros:

I scales much better with data

I can easily handle categorical, continuous and discrete spaces

I fairly robust against its own hyperparameters

Cons:

I the uncertainty estimates are often poor

I do not extrapolate well

I priors cannot easily be incorporated
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Bayesian Neural Networks

Instead of using one networks we generate multiple neural networks and use the
mean and variance of the individual network predictions to approximate p(f |D)
(see [Springenberg et al., 2016, Snoek et al., 2015])
Pros:

I scales much better with data

I can easily handle categorical, continuous and discrete spaces

I given enough network samples obtain nice and smooth uncertainty
estimates

Cons:

I need usually more data than Gaussian process

I brittle against its own hyperparameters.
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Model Comparison
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Exploitation vs Exploration

Given our model m and some data D = {(x0, y0), . . . (xn, yn)} how do we
decide which hyperparameter configuration xn+1 we shall evaluate next?

Naive solution: simply optimize µ(x), however, that would only pick points
around the best observed point.
We have to trade off between:

I exploring in regions of the configuration space where our model is
uncertain

I however, since our ultimate goal is to locate the global optimum x?, we
also want to exploit in the good regions of the configuration space
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Acquisition Functions

We use an acquisition function a(x) that automatically trades off exploration
and exploitation.
To find the next point xn+1 we numerically optimize a(x):

xn+1 ∈ arg max
x∈X

a(x)

Since the acquisition function only depends on our model, it is cheap to
evaluate and often provides gradient information.
Common ways to optimize the acquisition function:

I Gradient Ascent

I Evolutionary Algorithms

I Local Search

I Random Search
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Upper Confidence Bound
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Upper Confidence Bound [Srinivas et al., 2010]

Computes the acquisition function by:

a(x) = µ(x) + βσ(x)

I β is a hyperparameter that controls exploration and exploitation

I under some assumptions, you can proof that UCB converges to the global
optimum
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Expected Improvement [Jones et al., 1998]

Probably the most often used acquisition function is expected improvement,
which computes:

Ep(f |D)[max(y? − f(x), 0)].

where y? ∈ arg min{y0, . . . , yn}. Assuming p(f |D) to be a Gaussian, we can
compute EI in closed form by:

σ(x)(γ(x)Φ(γ(x))) + φ(γ(x))

here γ(x) =
y? − µ(x)

σ(x)
and Φ is the CDF and φ is the PDF of a standard

normal distribution.
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Acquisition Functions
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Bayesian Optimization [Jones et al., 1998]

Algorithm 1 Bayesian Optimization

1: Initialize data D0 using an initial design.
2: for t = 1, 2, . . . do
3: Fit probabilistic model for f(x) on data Dt−1

4: Choose xt by maximizing the acquisition function ap(x)
5: Evaluate yt ∼ f(xt) +N (0, σ2), and augment the data: Dt = Dt−1 ∪
{(xt, yt)}

6: Choose incumbent x̂t ← arg min{y1, ...yt}
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Bayesian Optimization
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Multi-fidelity Optimization

I Even though Bayesian optimization is sample efficient, it still requires tens
to hundreds of function evaluations.

I We often have access to cheap-to-evaluate approximations f̃(·, b) of of the
true objective functionf(·), so called fidelities.

I Each fidelity is parameterized by a so-called budget b ∈ [bmin, bmax].

I if b = bmax: then f̃(·, bmax) = f(·)
I if b < bmax: then f̃(·, b) is only an approximation of f(·) whose quality

typically increases with b.
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Dataset Subsets [Klein et al., 2017]
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Learning Curves
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Successive Halving [Jamieson and Talwalkar, 2016]

Algorithm 2 Successive Halving

Require: initial budget b0, maximum budget bmax, set of n configurations C =
{c1, c2, . . . cn}

1: b = b0
2: while b ≤ bmax do
3: L = {f̃(c, b) : c ∈ C}
4: C = topk(C,L, b|C|/η)c
5: b = η · b
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Successive Halving
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Hyperband [Li et al., 2017]

Algorithm 3 Hyperband

Require: budgets bmin and bmax, η

1: smax = blogη
bmax
bmin

c
2: for s ∈ {smax, smax − 1, . . . , 0} do

3: sample n = dsmax + 1

s+ 1
· ηse configurations

4: run SH on them with ηs · bmax as initial budget

Aaron Klein University of Freiburg DL Lab Course 18 (28)



Hyperband

Aaron Klein University of Freiburg DL Lab Course 18 (29)



Combining Hyperband with Bayesian Optimization [Falkner et al., 2018]

Hyperband:

I very efficient in terms of anytime performance

I due to the random sampling, cannot reuse previously gain knowledge and
take a long time to converge

Bayesian optimization:

I in its standard form it cannot exploit fidelites (however, several extensions
exist)

I in the most cases converges faster than random search

Can we combine both methods?
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Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs
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Tree of Parzen Estimators [Bergstra et al., 2011]

We fit two kernel density estimator for the good and bad configurations:

l(x) = p(y < α|x, D)

g(x) = p(y > α|x, D)

To select a new candidate xnew to evaluate, it maximizes the ratio
l(x)

g(x)
,

which is equivalent of optimizing expected improvement.
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BOHB [Falkner et al., 2018]

Algorithm 4 Pseudocode for sampling in BOHB

Require: observations D, fraction of random runs ρ, percentile q, number of
samples Ns, minimum number of points Nmin to build a model, and band-
width factor bw

1: if rand() ≤ ρ then
2: return random configuration

3: b = arg max {Db : |Db| ≥ Nmin + 2}
4: if b = ∅ then
5: return random configuration

6: fit KDEs as in TPE but for each budget b
7: draw Ns samples according to l′(x)
8: return sample with highest ratio l(x)/g(x)
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BOHB
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BOHB
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BOHB
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Conclusions

I Bayesian optimization is an efficient strategy for hyperparameter
optimization

I By using fidelities of the objective function we can speed up the
optimization procedure

I Hyperband is an extension of random search that exploits multi-fidelity of
the objective function,

I BOHB combines Hyperband with Bayesian optimization to combine the
strengths of both methods
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