
Introduction Automated Machine Learning

Aaron Klein

University of Freiburg

December 4, 2018

Aaron Klein University of Freiburg DL Lab Course 18 (1)



Machine Learning Pipeline

(Credit to Joaquin Vanschoren)

Aaron Klein University of Freiburg DL Lab Course 18 (2)



Automated Machine Learning

(Credit to Joaquin Vanschoren)

Aaron Klein University of Freiburg DL Lab Course 18 (3)



Automated Machine Learning

(Credit to Joaquin Vanschoren)

Aaron Klein University of Freiburg DL Lab Course 18 (4)



Hyperparameter Optimization

Finding the right hyperparameters for a machine learning algorithm A can be
defined as an optimization problem:

x? ∈ arg min
x∈X

f(x)

I x denotes all hyperparameters that should be optimized

I X is the configuration space which specifies the domain for each
hyperparameter

I f measures the error of training A with hyperparameters x, e. g. validation
error

I we assume f to be noisy, i. e. we only observe y(x) = f(x) + ε where
ε ∼ N (0, σnoise)

Aaron Klein University of Freiburg DL Lab Course 18 (5)



Recap Grid Search

Aaron Klein University of Freiburg DL Lab Course 18 (6)



Recap Random Search

Aaron Klein University of Freiburg DL Lab Course 18 (7)



Model-Based optimization

Aaron Klein University of Freiburg DL Lab Course 18 (8)



Model-Based optimization

Aaron Klein University of Freiburg DL Lab Course 18 (9)



Model-Based optimization

Aaron Klein University of Freiburg DL Lab Course 18 (10)



Gaussian Process

We can model the objective function f(x) with a Gaussian process
[Rasmussen and Williams, 2006]:

f(x) ∼ GP(µ(x), k(x,x′))

A Gaussian process is fully defined by:

I a mean function µ(x) which is usually set to µ(x) = 0

I a kernel function k(x,x′) which measures the similarity between two
points x and x′. For example the RBF kernel:

k(x, x′) = θ0 · exp

(
−‖x− x

′‖2

θ1

)
where θ0 and θ1 are hyperparameters.

Given new observed data D we can compute the posterior mean µ(x|θ,D) and
variance σ2(x|θ,D) analytically.

Aaron Klein University of Freiburg DL Lab Course 18 (11)



Random Forest

Use mean and variance of the individual tree predictions to approximate p(f |D)
(see [Hutter et al., 2011])
Pros:

I scales much better with data

I can easily handle categorical, continuous and discrete spaces

I fairly robust against its own hyperparameters

Cons:

I the uncertainty estimates are often poor

I do not extrapolate well

I priors cannot easily be incorporated

Aaron Klein University of Freiburg DL Lab Course 18 (12)



Bayesian Neural Networks

Instead of using one networks we generate multiple neural networks and use the
mean and variance of the individual network predictions to approximate p(f |D)
(see [Springenberg et al., 2016, Snoek et al., 2015])
Pros:

I scales much better with data

I can easily handle categorical, continuous and discrete spaces

I given enough network samples obtain nice and smooth uncertainty
estimates

Cons:

I need usually more data than Gaussian process

I brittle against its own hyperparameters.

Aaron Klein University of Freiburg DL Lab Course 18 (13)



Model Comparison

Aaron Klein University of Freiburg DL Lab Course 18 (14)



Exploitation vs Exploration

Given our model m and some data D = {(x0, y0), . . . (xn, yn)} how do we
decide which hyperparameter configuration xn+1 we shall evaluate next?

Naive solution: simply optimize µ(x), however, that would only pick points
around the best observed point.
We have to trade off between:

I exploring in regions of the configuration space where our model is
uncertain

I however, since our ultimate goal is to locate the global optimum x?, we
also want to exploit in the good regions of the configuration space

Aaron Klein University of Freiburg DL Lab Course 18 (15)



Exploitation vs Exploration

Given our model m and some data D = {(x0, y0), . . . (xn, yn)} how do we
decide which hyperparameter configuration xn+1 we shall evaluate next?
Naive solution: simply optimize µ(x), however, that would only pick points
around the best observed point.

We have to trade off between:

I exploring in regions of the configuration space where our model is
uncertain

I however, since our ultimate goal is to locate the global optimum x?, we
also want to exploit in the good regions of the configuration space

Aaron Klein University of Freiburg DL Lab Course 18 (15)



Exploitation vs Exploration

Given our model m and some data D = {(x0, y0), . . . (xn, yn)} how do we
decide which hyperparameter configuration xn+1 we shall evaluate next?
Naive solution: simply optimize µ(x), however, that would only pick points
around the best observed point.
We have to trade off between:

I exploring in regions of the configuration space where our model is
uncertain

I however, since our ultimate goal is to locate the global optimum x?, we
also want to exploit in the good regions of the configuration space

Aaron Klein University of Freiburg DL Lab Course 18 (15)



Acquisition Functions

We use an acquisition function a(x) that automatically trades off exploration
and exploitation.
To find the next point xn+1 we numerically optimize a(x):

xn+1 ∈ arg max
x∈X

a(x)

Since the acquisition function only depends on our model, it is cheap to
evaluate and often provides gradient information.
Common ways to optimize the acquisition function:

I Gradient Ascent

I Evolutionary Algorithms

I Local Search

I Random Search

Aaron Klein University of Freiburg DL Lab Course 18 (16)



Upper Confidence Bound

Aaron Klein University of Freiburg DL Lab Course 18 (17)



Upper Confidence Bound [Srinivas et al., 2010]

Computes the acquisition function by:

a(x) = µ(x) + βσ(x)

I β is a hyperparameter that controls exploration and exploitation

I under some assumptions, you can proof that UCB converges to the global
optimum

Aaron Klein University of Freiburg DL Lab Course 18 (18)



Expected Improvement [Jones et al., 1998]

Probably the most often used acquisition function is expected improvement,
which computes:

Ep(f |D)[max(y? − f(x), 0)].

where y? ∈ arg min{y0, . . . , yn}. Assuming p(f |D) to be a Gaussian, we can
compute EI in closed form by:

σ(x)(γ(x)Φ(γ(x))) + φ(γ(x))

here γ(x) =
y? − µ(x)

σ(x)
and Φ is the CDF and φ is the PDF of a standard

normal distribution.

Aaron Klein University of Freiburg DL Lab Course 18 (19)



Acquisition Functions

Aaron Klein University of Freiburg DL Lab Course 18 (20)



Bayesian Optimization [Jones et al., 1998]

Algorithm 1 Bayesian Optimization

1: Initialize data D0 using an initial design.
2: for t = 1, 2, . . . do
3: Fit probabilistic model for f(x) on data Dt−1

4: Choose xt by maximizing the acquisition function ap(x)
5: Evaluate yt ∼ f(xt) +N (0, σ2), and augment the data: Dt = Dt−1 ∪
{(xt, yt)}

6: Choose incumbent x̂t ← arg min{y1, ...yt}

Aaron Klein University of Freiburg DL Lab Course 18 (21)



Bayesian Optimization

Aaron Klein University of Freiburg DL Lab Course 18 (22)



Multi-fidelity Optimization

I Even though Bayesian optimization is sample efficient, it still requires tens
to hundreds of function evaluations.

I We often have access to cheap-to-evaluate approximations f̃(·, b) of of the
true objective functionf(·), so called fidelities.

I Each fidelity is parameterized by a so-called budget b ∈ [bmin, bmax].

I if b = bmax: then f̃(·, bmax) = f(·)
I if b < bmax: then f̃(·, b) is only an approximation of f(·) whose quality

typically increases with b.

Aaron Klein University of Freiburg DL Lab Course 18 (23)



Dataset Subsets [Klein et al., 2017]

Aaron Klein University of Freiburg DL Lab Course 18 (24)



Learning Curves

Aaron Klein University of Freiburg DL Lab Course 18 (25)



Successive Halving [Jamieson and Talwalkar, 2016]

Algorithm 2 Successive Halving

Require: initial budget b0, maximum budget bmax, set of n configurations C =
{c1, c2, . . . cn}

1: b = b0
2: while b ≤ bmax do
3: L = {f̃(c, b) : c ∈ C}
4: C = topk(C,L, b|C|/η)c
5: b = η · b

Aaron Klein University of Freiburg DL Lab Course 18 (26)



Successive Halving

Aaron Klein University of Freiburg DL Lab Course 18 (27)



Hyperband [Li et al., 2017]

Algorithm 3 Hyperband

Require: budgets bmin and bmax, η

1: smax = blogη
bmax
bmin

c
2: for s ∈ {smax, smax − 1, . . . , 0} do

3: sample n = dsmax + 1

s+ 1
· ηse configurations

4: run SH on them with ηs · bmax as initial budget

Aaron Klein University of Freiburg DL Lab Course 18 (28)



Hyperband

Aaron Klein University of Freiburg DL Lab Course 18 (29)



Combining Hyperband with Bayesian Optimization [Falkner et al., 2018]

Hyperband:

I very efficient in terms of anytime performance

I due to the random sampling, cannot reuse previously gain knowledge and
take a long time to converge

Bayesian optimization:

I in its standard form it cannot exploit fidelites (however, several extensions
exist)

I in the most cases converges faster than random search

Can we combine both methods?

Aaron Klein University of Freiburg DL Lab Course 18 (30)



Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs

Aaron Klein University of Freiburg DL Lab Course 18 (31)



Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs

Aaron Klein University of Freiburg DL Lab Course 18 (31)



Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs

Aaron Klein University of Freiburg DL Lab Course 18 (31)



Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs

Aaron Klein University of Freiburg DL Lab Course 18 (31)



Tree of Parzen Estimators [Bergstra et al., 2011]

I non-parametric KDE
for p(~x) instead of
Gaussian Processes
modelling p(y|~x)

I equivalent to expected
improvement

+ efficient O(N · d)

+ complex search spaces
with priors

+ parallelizable

- not as sample efficient
as GPs

Aaron Klein University of Freiburg DL Lab Course 18 (31)



Tree of Parzen Estimators [Bergstra et al., 2011]

We fit two kernel density estimator for the good and bad configurations:

l(x) = p(y < α|x, D)

g(x) = p(y > α|x, D)

To select a new candidate xnew to evaluate, it maximizes the ratio
l(x)

g(x)
,

which is equivalent of optimizing expected improvement.

Aaron Klein University of Freiburg DL Lab Course 18 (32)



BOHB [Falkner et al., 2018]

Algorithm 4 Pseudocode for sampling in BOHB

Require: observations D, fraction of random runs ρ, percentile q, number of
samples Ns, minimum number of points Nmin to build a model, and band-
width factor bw

1: if rand() ≤ ρ then
2: return random configuration

3: b = arg max {Db : |Db| ≥ Nmin + 2}
4: if b = ∅ then
5: return random configuration

6: fit KDEs as in TPE but for each budget b
7: draw Ns samples according to l′(x)
8: return sample with highest ratio l(x)/g(x)

Aaron Klein University of Freiburg DL Lab Course 18 (33)



BOHB

Aaron Klein University of Freiburg DL Lab Course 18 (34)



BOHB

Aaron Klein University of Freiburg DL Lab Course 18 (35)



BOHB

Aaron Klein University of Freiburg DL Lab Course 18 (36)



Conclusions

I Bayesian optimization is an efficient strategy for hyperparameter
optimization

I By using fidelities of the objective function we can speed up the
optimization procedure

I Hyperband is an extension of random search that exploits multi-fidelity of
the objective function,

I BOHB combines Hyperband with Bayesian optimization to combine the
strengths of both methods

Aaron Klein University of Freiburg DL Lab Course 18 (37)



References I

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).

Algorithms for hyper-parameter optimization.

In Proceedings of the 25th International Conference on Advances in Neural Information
Processing Systems (NIPS’11), pages 2546–2554.

Falkner, S., Klein, A., and Hutter, F. (2018).

BOHB: Robust and efficient hyperparameter optimization at scale.

In Proceedings of the 35th International Conference on Machine Learning (ICML 2018),
pages 1436–1445.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011).

Sequential model-based optimization for general algorithm configuration.

In Proceedings of the Fifth International Conference on Learning and Intelligent
Optimization (LION’11), pages 507–523.

Jamieson, K. and Talwalkar, A. (2016).

Non-stochastic best arm identification and hyperparameter optimization.

In Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics (AISTATS).

Jones, D., Schonlau, M., and Welch, W. (1998).

Efficient global optimization of expensive black box functions.

Journal of Global Optimization, 13:455–492.

Aaron Klein University of Freiburg DL Lab Course 18 (38)



References II

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017).

Fast bayesian hyperparameter optimization on large datasets.

In Electronic Journal of Statistics, volume 11.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017).

Hyperband: Bandit-based configuration evaluation for hyperparameter optimization.

In Proceedings of the International Conference on Learning Representations (ICLR’17).

Rasmussen, C. and Williams, C. (2006).

Gaussian Processes for Machine Learning.

The MIT Press.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.,

Prabhat, and Adams, R. (2015).

Scalable Bayesian optimization using deep neural networks.

In Proceedings of the 32nd International Conference on Machine Learning (ICML’15).

Springenberg, J., Klein, A., S.Falkner, and Hutter, F. (2016).

Bayesian optimization with robust bayesian neural networks.

In Proceedings of the 30th International Conference on Advances in Neural Information
Processing Systems (NIPS’16).

Aaron Klein University of Freiburg DL Lab Course 18 (39)



References III

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010).

Gaussian process optimization in the bandit setting: No regret and experimental design.

In Proceedings of the 27th International Conference on Machine Learning (ICML’10).

Aaron Klein University of Freiburg DL Lab Course 18 (40)


