
% GNU Octave is a (programmable) calculator and is very good at performing

% matrix operations. The basic syntax is the same as MATLAB’s. At Octave’s

% command prompt, a command can be entered. If you end a line with a semicolon,

% the output is suppressed. If the output is longer than one screen, you might

% have to press ’q’ to get back to the prompt. Everything you enter at the

% prompt can as well be written into a script file with extension .m (like this

% one). Scripts can be executed by calling its name. Comments are done with the

% ’%’ sign.

%%%%%% GETTING HELP

% The command ’help <command>’ displays the help text for the desired

% command.

help rand

% Search for the given string in the help text of all functions.

lookfor eigenvalues

% List all currently defined variables

who

% Delete all variables defined until now

clear

% Clear screen

clc

%Turn off output pagination

more off

%%%%%% DATA ENTRY

% Vectors and matrices are entered using square brackets [].

% Elements are seperated by a space or a comma, a new row is

% started with a semicolon:

% A 1x4 row vector

a = [1, 2, 3, 4]

a2 = [1 2 3 4]

% A 2x2 matrix

A = [1, 2; 3, 4]

A2 = [1 2; 3 4]

% Get the size of a matrix

size(A)

size(A,1)

size(A,2)

1

%%%%%% DATA GENERATION

% Generate a row vector with elements 1, ..., 10

b = [1:10]

% Generate a row vector with elements 1, 1.1, 1.2, ..., 10

c = [1:0.1:10]

% Get the length of a vector

length(c)

% Create a 2x3 matrix filled with zeros or ones respectively

C = zeros(2,3)

D = ones(2,3)

% Create a 2x2 identity matrix

E = eye(2)

%Create matrix from other matrices/vectors (dimensions must agree)

X = [c;c]

Y = [A2 A2]

help repmat

Z = repmat(A,2,3)

% Create a column vector of 10 uniformly distributed random numbers

% between 5 and 15.

u = unifrnd(5, 15, 10, 1)

% Create a 5x5 matrix with normally distributed random variables with a

% mean of 2.5 and a sigma of 5.0.

N = normrnd(2.5, 5.0, 5, 5)

%%%%%% DATA ACCESS

% All indices in Octave start with 1, as opposed to 0 as usual in other

% programming languages.

% Retrieve the element in row 1 and column 2

A(1,2)

% Retrieve all elements of row 1 in the matrix

A(1,:)

% Retrieve all elements of column 2 in the matrix

A(:,2)

% Retrieve a submatrix

Z2 = Z(1:2,3:6)

2

% Retrieve every third element of a vector

x = [1:20]

x2 = x(1:3:length(x))

% Saving and loading data

save A

clear A

load A

%%%%%% MATRIX OPERATIONS

% Transpose

A’

% Matrix addition, subtraction, multiplication and inversion

F = A + E + C * D’

G = F * inv(F)

% Element-wise operations

H = A * 2 + A .* E + A .^ 2

% Matrix-scalar addition/multiplication

threes = 3 + zeros(3)

tens = 10*ones(3)

%%%%%% OTHER FUNCTIONS

% Can be used on scalars as well as matrices. When applied to matrices the

% operations are performed elementwise.

a = 2

b = 3

v = [2 4 6]

w = [3 5 7]

sin(a)

sin(v)

cos(a)

cos(v)

atan2(a, b)

atan2(v, w)

sqrt(a)

sqrt(v)

%%%%%% PROGRAMMING CONSTRUCTS

% Functions

% Functions have the following layout:

% function [retval1, retval2, ...] <function_name>(arg1, arg2, ...)

3

% <function body>

% end

% Returning values is performed by assigning values to the return values

% defined in the header of the function.

function y = add_two_numbers(a, b)

y = a + b;

end

% For loops

for i=[1:10]

if mod(i,2) == 0

disp([’even: ’, num2str(i)])

else

disp([’odd: ’, num2str(i)])

endif

endfor

% Always try to vectorize operations when possible!

v1 = [1:10]

v2 = [3:12]

dotProduct = 0

for i=1:length(v1)

dotProduct = dotProduct + v1(i)*v2(i)

endfor

% Better:

dotProduct = sum(v1.*v2)

%%%%%% BASIC PLOTTING

% Create a vector of values in the range [1, 10] with an increment of 0.1

% and suppress the output (semicolon at the end).

x = -2*pi:0.1:2*pi;

% Compute sin() for all elements of the vector

y = sin(x);

% Close all existing plot windows

close all

% Plot the the values of x against those in y

plot(x, y)

% Draw following plots into the same figure. If this is not set subsequent

% plots erase the previously generated plots.

hold on

% Plot the cosine of the data points in green (g) with markers (+)

% instead of lines.

plot(x, cos(x), ’+g’);

4

% Plot a blue point

plot(2, 0.5, ’ob’);

title("sine and cosine")

xlabel(’x (rad)’)

ylabel(’y = f(x)’)

% Add a grid

grid on

%Useful options: ’markersize’, ’linewidth’

%See also the commands: xlabel, ylabel, title

% Save the complete plot to a file.

print(’/tmp/plot.png’, ’-dpng’)

5

