Albert-Ludwigs-Universität Freiburg, Institut für Informatik Lecture: Robot Mapping by Prof. Dr. Wolfram Burgard Tutors: Dr. Daniel Büscher, Dr. Lukas Luft, Shengchao Yan, Kshitij Sirohi Winter term 2020/2021

Sheet 3

Topic: Extended Kalman Filter

Due: November 24, 2020

Do not use Octave or other software to solve either of the following exercises.

Exercise 1: Bayes Filter and Extended Kalman Filter

- (a) Describe briefly the two main steps of the Bayes filter in your own words.
- (b) Describe briefly the meaning of the following probability density functions: $p(x_t \mid u_t, x_{t-1}), p(z_t \mid x_t)$, and $bel(x_t)$, which are processed by the Bayes filter.
- (c) Specify the distributions that correspond to the above mentioned three terms in the EKF.
- (d) Explain in a few sentences all of the components of the EKF algorithm, i. e., $\mu_t, \Sigma_t, \bar{\mu}_t, \bar{\Sigma}_t, g, G_t^x, R_t, h, H_t^x, Q_t, K_t$ and why they are needed. Specify the dimensionality of these components.

Exercise 2: Jacobians

(a) Derive the Jacobian matrix G_t^x of the noise-free motion function g with respect to the pose of the robot. Use the odometry motion model as in exercise sheet 1:

$$\begin{pmatrix} x_t \\ y_t \\ \theta_t \end{pmatrix} = \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{pmatrix} + \begin{pmatrix} \delta_{trans} \cos(\theta_{t-1} + \delta_{rot1}) \\ \delta_{trans} \sin(\theta_{t-1} + \delta_{rot1}) \\ \delta_{rot1} + \delta_{rot2} \end{pmatrix}.$$

(b) Derive the Jacobian matrix ${}^{low}H_t^i$ of the noise-free sensor function h corresponding to the i^{th} landmark:

$$h(\bar{\mu}_t, i) = z_t^i = \begin{pmatrix} r_t^i \\ \phi_t^i \end{pmatrix} = \begin{pmatrix} \sqrt{(\bar{\mu}_{i,x} - \bar{\mu}_{t,x})^2 + (\bar{\mu}_{i,y} - \bar{\mu}_{t,y})^2} \\ \operatorname{atan2}(\bar{\mu}_{i,y} - \bar{\mu}_{t,y}, \bar{\mu}_{i,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

where $(\bar{\mu}_{i,x}, \bar{\mu}_{i,y})^T$ is the position of the landmark, $(\bar{\mu}_{t,x}, \bar{\mu}_{t,y}, \bar{\mu}_{t,\theta})^T$ is the pose of the robot at time t, and r_t^i and ϕ_t^i are the observed range and bearing of the landmark, respectively.

Hint: Use
$$\frac{\partial}{\partial x} \operatorname{atan2}(y, x) = \frac{-y}{x^2 + y^2}$$
, and $\frac{\partial}{\partial y} \operatorname{atan2}(y, x) = \frac{x}{x^2 + y^2}$.