Uni-Logo
You are here: Home Teaching SS 2017 Introduction to Mobile Robotics
Artikelaktionen

Introduction to Mobile Robotics - SS 2017

Introduction to Mobile Robotics (engl.) - Autonomous Mobile Systems

This course will introduce basic concepts and techniques used within the field of mobile robotics. We analyze the fundamental challenges for autonomous intelligent systems and present the state of the art solutions. Among other topics, we will discuss:
  • Kinematics
  • Sensors
  • Vehicle localization
  • Map building
  • SLAM
  • Path planning
  • Exploration of unknown terrain

  • Lecturer: Prof. Dr. Wolfram Burgard,
  • Co-organizers: Marina Kollmitz, Oier Mees, Daniel Büscher
  • Lecture: Wed 16.00-18.00 / Fri 14.00-15.00, Building: 101, Room: SR 00-010/014
  • Exercises: Fri 15.00-16.00, Building: 101, Room: SR 00-010/014
  • Exam: There are going to be ORAL EXAMS for bachelor students of Embedded Systems Engineering and Computer Science. The exam will be WRITTEN for everyone else.
    1. WRITTEN: Fri 18-08-2017, 10:00, Building: 101, Room: HS 00 036
    2. ORAL: Fri 18-08-2017, Tue 22-08-2017
  • Question Round: Fri 11-08-2017, 15.00-16.00, Building: 101, Room: SR 00-010/014
  • post-exam review: Wed 25-10-2017, 16:00-17:00, Building: 052, Room: SR 02-017

Lectures

Lecture Dates Topic Slides Recordings
00 26-04-2017 Introduction PDF MP4
01 26-04-2017
28-04-2017
Linear Algebra PDF MP4_ss16
MP4
02 03-05-2017 Robot Control Paradigms PDF MP4
03 03-05-2017
05-05-2017
Wheeled Locomotion PDF MP4
MP4
04 05-05-2017 Proximity Sensors PDF MP4
05 10-05-2017
12-05-2017
Probabilistic Robotics PDF MP4
MP4
06 17-05-2017
17-05-2017
19-05-2017
Probabilistic Motion Models PDF MP4_ss16
MP4_ss16
MP4_ss16
07 24-05-2017
26-05-2017
Probabilistic Sensor Models PDF MP4_ss16
MP4
08 26-05-2017 Bayes Filter - Discrete Filters PDF MP4
09 31-05-2017
31-05-2017
Bayes Filter - Particle Filter and MCL PDF MP4_ss16
MP4_ss16
10 02-06-2017 Bayes Filter - Kalman Filter PDF MP4_ss16
11 14-06-2017 Bayes Filter - Extended Kalman Filter PDF MP4
12 14-06-2017
16-06-2017
21-06-2017
21-06-2017
Grid Maps and Mapping With Known Poses PDF MP4
MP4
MP4
MP4
13 23-06-2017
28-06-2017
SLAM - Simultaneous Localization and Mapping PDF MP4
MP4_ss16
14 28-06-2017 SLAM - Landmark-based FastSLAM PDF MP4_ss16
15 30-06-2017
05-07-2017
05-07-2017
SLAM - Grid-based FastSLAM PDF MP4_ss16
MP4
MP4
16 12-07-2017 SLAM - Graph-based SLAM PDF MP4_ss16
17 07-07-2017 Techniques for 3D Mapping PDF MP4
18 12-07-2017 Iterative Closest Point Algorithm PDF MP4_ss16
19 14-07-2017
19-07-2017
21-07-2017
Path and Motion Planning PDF MP4_ss16
MP4
MP4
20 26-07-2017 Multi-Robot Exploration PDF MP4_ss16
21 26-07-2017 Information Driven Exploration PDF MP4_ss16
22 28-07-2017 Summary PDF MP4_ss14

Exercises

Solving the exercise sheets is recommended but not mandatory to be admitted to the final exam. There are no bonus points.

Exercise sheets will be published on Fridays and will be discussed in class one week later. We strongly encourage you to solve the exercise sheets beforehand to benefit from the discussions in class.

Join this Google group forum for discussing questions on lectures and exercises or send a mail to mobilerobotics@informatik.uni-freiburg.de for an appointment with one of the teaching assistants.

Sheet Due date Topic Exercise Sheet Exercise Material Solutions
01 28-04-2017 Setup Python PDF func.py
02 05-05-2017 Linear Algebra PDF laserscan.dat PDF
03 12-05-2017 Locomotion, Differential Drive PDF PDF
04 19-05-2017 Bayes Rule PDF PDF
05 24-05-2017 Sampling, Motion Models PDF PDF
06 02-06-2017 Sensor Models PDF PDF
07 16-06-2017 Discrete Filter, Particle Filter PDF pf_framework.tar.gz PDF
08 23-06-2017 Extended Kalman Filter PDF kf_framework.tar.gz PDF
09 30-06-2017 Mapping with Known Poses PDF PDF
10 07-07-2017 Simultaneous Localization and Mapping PDF PDF
11 14-07-2017 FastSLAM PDF fastSLAM_framework.tar.gz
fastSLAM_algorithm.pdf
PDF
12 21-07-2017 Iterative Closest Point Algorithm PDF icp_framework.tar.gz PDF
13 28-07-2017 Path Planning PDF planning_framework.tar.gz PDF


Additional Material

  • Notes on one dimensional Gaussians (PDF)
  • Notes on multi dimensional Gaussians (PDF)
  • Python cheat sheet (PDF)
  • Matrix cookbook (PDF)
Benutzerspezifische Werkzeuge